Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (8): 1529-1536.doi: 10.12122/j.issn.1673-4254.2024.08.11
Mingyang ZHU1(), Bokang WANG1, Xiusen ZHANG1, Kexu ZHOU1, Zeyu MIAO1, Jiangtao SUN2,3,4
Received:
2024-05-24
Online:
2024-08-20
Published:
2024-09-06
Contact:
Jiangtao SUN
E-mail:my98272023@163.com
Mingyang ZHU, Bokang WANG, Xiusen ZHANG, Kexu ZHOU, Zeyu MIAO, Jiangtao SUN. Assessment of baseline CCL19+ dendritic cell infiltration for predicting responses to immunotherapy in lung adenocarcinoma patients[J]. Journal of Southern Medical University, 2024, 44(8): 1529-1536.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.08.11
Patient type | n | CCL19+ DC Low expression | CCL19+ DC High expression | χ² | P |
---|---|---|---|---|---|
Respond | 45 | 13 | 32 | 8.663 | 0.003 |
Unrespond | 51 | 30 | 21 |
Tab.1 Correlation between baseline expression of CCL19+ DCs and immunotherapy efficacy in patients with lung adenocarcinoma
Patient type | n | CCL19+ DC Low expression | CCL19+ DC High expression | χ² | P |
---|---|---|---|---|---|
Respond | 45 | 13 | 32 | 8.663 | 0.003 |
Unrespond | 51 | 30 | 21 |
Fig. 2 Expression of CD8+ T cell surface molecules granzyme B, perforin, IFN-γ, and Ki-67 in lung adenocarcinoma tissues of patients with high and low levels of CCL19+ DC infiltration. A: Immunofluorescence images of CD8+ T surface molecule expressions in each group (scale bar=10 μm, 5 μm). B: Statistical graph of CD8+ T surface molecule expressions. **P<0.01, ***P<0.001.
Patient | n | CD8+ T cell desert type | CD8+ T cell rich type | χ² | P |
---|---|---|---|---|---|
CCL19+ DC high expression | 53 | 21 | 32 | 7.362 | 0.007 |
CCL19+ DC low expression | 43 | 29 | 14 |
Tab.2 Correlation between baseline expression of CCL19+ DCs and CD8+ T cell infiltration
Patient | n | CD8+ T cell desert type | CD8+ T cell rich type | χ² | P |
---|---|---|---|---|---|
CCL19+ DC high expression | 53 | 21 | 32 | 7.362 | 0.007 |
CCL19+ DC low expression | 43 | 29 | 14 |
Fig.4 Western blotting of CCL19. A: Expressions of CCL19 protein in different groups detected by Western blotting. B: Statistical analysis of CCL19 expressions. ***P<0.001.
Fig.5 Effect of different treatments on the expression of surface molecules of CD8+ T cells in the co-culture systems. A: Flow cytometry of surface molecule expressions on CD8+ T cells. B: Statistical analysis of surface molecule expression on CD8+ T cells. **P<0.01, ***P<0.001.
1 | Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117. |
2 | Garon EB, Hellmann MD, Rizvi NA, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37(28): 2518-27. |
3 | Zhang YY, Zhang ZM. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-21. |
4 | Yi M, Jiao DC, Xu HX, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors[J]. Mol Cancer, 2018, 17(1): 129. |
5 | Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019, 19(3): 133-50. |
6 | Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-66. |
7 | Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24. |
8 | Gardner A, Ruffell B. Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37(12): 855-65. |
9 | Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited[J]. Curr Opin Immunol, 2017, 45: 43-51. |
10 | Cancel JC, Crozat K, Dalod M, et al. Are conventional type 1 dendritic cells critical for protective antitumor immunity and how?[J]. Front Immunol, 2019, 10: 9. |
11 | Böttcher JP, Sousa CRE. The role of type 1 conventional dendritic cells in cancer immunity[J]. Trends Cancer, 2018, 4(11): 784-92. |
12 | Gunn MD, Kyuwa S, Tam C, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization[J]. J Exp Med, 1999, 189(3): 451-60. |
13 | Viola A, Sarukhan A, Bronte V, et al. The pros and cons of chemokines in tumor immunology[J]. Trends Immunol, 2012, 33(10): 496-504. |
14 | Nagarsheth N, Wicha MS, Zou WP. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17(9): 559-72. |
15 | Gu Q, Zhou SF, Chen C, et al. CCL19: a novel prognostic chemokine modulates the tumor immune microenvironment and outcomes of cancers[J]. Aging, 2023, 15(21): 12369-87. |
16 | Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity[J]. Nature, 2020, 580(7802): 257-62. |
17 | Smalley I, Chen ZH, Phadke M, et al. Single-cell characterization of the immune microenvironment of melanoma brain and lepto-meningeal metastases[J]. Clin Cancer Res, 2021, 27(14): 4109-25. |
18 | Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 1024-42. |
19 | Guo QQ, Liu LW, Chen ZL, et al. Current treatments for non-small cell lung cancer[J]. Front Oncol, 2022, 12: 945102. |
20 | Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes[J]. Clin Cancer Res, 2019, 25(15): 4592-602. |
21 | Collin M, Bigley V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20. |
22 | Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12[J]. Immunity, 2022, 55(9): 1749. |
23 | Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition[J]. Immunity, 2016, 44(4): 924-38. |
24 | Gowhari Shabgah A, Haleem Al-Qaim Z, Markov A, et al. Chemokine CXCL14; a double-edged sword in cancer development[J]. Int Immunopharmacol, 2021, 97: 107681. |
25 | Gowhari Shabgah A, Qasim MT, Mojtaba Mostafavi S, et al. CXC chemokine ligand 16: a Swiss army knife chemokine in cancer[J]. Expert Rev Mol Med, 2021, 23: e4. |
26 | Artinger M, Matti C, Gerken OJ, et al. A versatile toolkit for semi-automated production of fluorescent chemokines to study CCR7 expression and functions[J]. Int J Mol Sci, 2021, 22(8): 4158. |
27 | Hillinger S, Yang SC, Zhu L, et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model[J]. J Immunol, 2003, 171(12): 6457-65. |
28 | Lu J, Ma JJ, Cai W, et al. CC motif chemokine ligand 19 suppressed colorectal cancer in vivo accompanied by an increase in IL-12 and IFN-γ[J]. Biomedecine Pharmacother, 2015, 69: 374-9. |
29 | Liu XX, Wang BL, Li YY, et al. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system[J]. ACS Cent Sci, 2019, 5(2): 277-89. |
30 | Cheng HW, Onder L, Cupovic J, et al. CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses[J]. J Allergy Clin Immunol, 2018, 142(4): 1257-71.e4. |
31 | Iida Y, Yoshikawa R, Murata A, et al. Local injection of CCL19-expressing mesenchymal stem cells augments the therapeutic efficacy of anti-PD-L1 antibody by promoting infiltration of immune cells[J]. J Immunother Cancer, 2020, 8(2): e000582. |
32 | Li P, Liu FY, Sun LY, et al. Chemokine receptor 7 promotes cell migration and adhesion in metastatic squamous cell carcinoma of the head and neck by activating integrin αvβ3[J]. Int J Mol Med, 2011, 27(5): 679-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||