南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (11): 2504-2510.doi: 10.12122/j.issn.1673-4254.2025.11.23

• • 上一篇    下一篇

大学生心理压力智能评估:基于融合文本与影像的多模态模型的设计及验证

谢辉荣(), 胡潮滨, 梁国华, 韩红喆, 黄牧, 冯前进()   

  1. 南方医科大学生物医学工程学院,广东 广州 510515
  • 收稿日期:2025-07-27 出版日期:2025-11-20 发布日期:2025-11-28
  • 通讯作者: 冯前进 E-mail:450282452@qq.com;1271992826@qq.com
  • 作者简介:谢辉荣,硕士,讲师,E-mail: 450282452@qq.com
  • 基金资助:
    国家自然科学基金(52305023);广东省自然科学基金(2024A1515011979)

Design and validation of a multimodal model integrating text and imaging data for intelligent assessment of psychological stress in college students

Huirong XIE(), Chaobin HU, Guohua LIANG, Hongzhe HAN, Mu HUANG, Qianjin FENG()   

  1. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • Received:2025-07-27 Online:2025-11-20 Published:2025-11-28
  • Contact: Qianjin FENG E-mail:450282452@qq.com;1271992826@qq.com
  • Supported by:
    National Natural Science Foundation of China(52305023)

摘要:

目的 提出一种融合社交媒体文本与图像信息的多模态大学生心理压力自动评估模型,以提升评估的客观性与准确性,服务高校心理健康智能化建设。 方法 基于深度学习技术,设计包含文本情绪建模、图像情绪建模及多模态融合预测3大模块的评估框架。通过Bi-LSTM提取文本情感特征、U-Net提取图像语义线索,并采用特征拼接策略实现跨模态语义协同,完成轻度、中度、重度3类心理压力的自动识别。研究以广东省多所高校1577名学生的社交平台数据为基础构建多模态标注数据集,清洗后随机抽取252个样本用于模型训练与测试。 结果 在3分类任务中,模型在测试集上表现出色,准确率达92.86%,F1分数为0.9276,展现出良好的稳定性与一致性。混淆矩阵分析亦显示模型能有效区分不同压力等级。 结论 本研究所构建的多模态心理压力评估模型有效融合了非结构化社交行为数据,提升了心理状态识别的科学性与实用性,为智能心理服务系统建设提供了理论支持和技术路径。

关键词: 大学生心理压力, 多模态数据融合, 自动评估, 深度学习, 社交媒体情感分析

Abstract:

Objective We propose a multimodal model integrating social media text and image data for automated assessment of psychological stress in college students to support the development of intelligent mental health services in higher education institutions. Methods Based on deep learning technology, we designed an evaluation framework comprising a text sentiment modeling module, an image sentiment modeling module, and a multimodal fusion prediction module. Text sentiment features were extracted using Bi-LSTM, and image semantic cues were extracted via U-Net. A feature concatenation strategy was used to enable cross-modal semantic collaboration to achieve automatic identification of 3 psychological stress levels: mild, moderate, and severe. We constructed a multimodal annotated dataset using social platform data from 1577 students across multiple universities in Guangdong Province. After data cleaning, 252 samples were randomly selected for model training and testing. Results In the 3-classification task, the model demonstrated outstanding performance on the test set, and achieved an accuracy of 92.86% and an F1 score of 0.9276, exhibiting excellent stability and consistency. Confusion matrix analysis further revealed the model's ability to effectively distinguish between different pressure levels. Conclusion The multimodal psychological stress assessment model developed in this study effectively integrates unstructured social behavior data to enhance the scientific rigor and practical applicability of psychological state recognition, and thus provides support for developing intelligent psychological service systems.

Key words: college students' psychological stress, multimodal data fusion, automated assessment, deep learning, social media sentiment analysis