| [1] |
Fan YY, Liu J, Zeng YY, et al. Factors associated with non-suicidal self-injury in Chinese adolescents: a meta-analysis[J]. Front Psychiatry, 2021, 12: 747031. doi:10.3389/fpsyt.2021.747031
|
| [2] |
Huang JP, Nigatu YT, Smail-Crevier R, et al. Interventions for common mental health problems among university and college students: a systematic review and meta-analysis of randomized controlled trials[J]. J Psychiatr Res, 2018, 107: 1-10. doi:10.1016/j.jpsychires.2018.09.018
|
| [3] |
Bruffaerts R, Mortier P, Kiekens G, et al. Mental health problems in college freshmen: Prevalence and academic functioning[J]. J Affect Disord, 2018, 225: 97-103. doi:10.1016/j.jad.2017.07.044
|
| [4] |
Cage E, Jones E, Ryan G, et al. Student mental health and transitions into, through and out of university: student and staff perspectives[J]. J Furth High Educ, 2021, 45(8): 1076-89. doi:10.1080/0309877x.2021.1875203
|
| [5] |
Pedrelli P, Nyer M, Yeung A, et al. College students: mental health problems and treatment considerations[J]. Acad Psychiatry, 2015, 39(5): 503-11. doi:10.1007/s40596-014-0205-9
|
| [6] |
Hickey BA, Chalmers T, Newton P, et al. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: a systematic review[J]. Sensors (Basel), 2021, 21(10): 3461. doi:10.3390/s21103461
|
| [7] |
Ophir Y, Tikochinski R, Asterhan CSC, et al. Deep neural networks detect suicide risk from textual facebook posts[J]. Sci Rep, 2020, 10(1): 16685. doi:10.1038/s41598-020-73917-0
|
| [8] |
夏先益. 基于文本挖掘的在线论坛用户心理健康自动评估[D]. 南昌: 江西财经大学, 2019.
|
| [9] |
张凤云. 基于ON-LSTM的文本情绪分析方法研究[D]. 郑州: 郑州大学, 2020.
|
| [10] |
Cole EJ, Phillips AL, Bentzley BS, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial[J]. Am J Psychiatry, 2022, 179(2): 132-41. doi:10.1176/appi.ajp.2021.20101429
|
| [11] |
Baker J, Ngo H, Efthimiou TN, et al. Electrical stimulation of smiling muscles reduces visual processing load and enhances happiness perception in neutral faces[J]. Commun Psychol, 2025, 3(1): 94. doi:10.1038/s44271-025-00281-y
|
| [12] |
章 荪, 尹春勇. 基于多任务学习的时序多模态情感分析模型[J]. 计算机应用, 2021, 41(6): 1631-9.
|
| [13] |
Zhu QJ, Xiong JC, Peng LL. College students' mental health evaluation model based on tensor fusion network with multimodal data during the COVID-19 pandemic[J]. Biotechnol Genet Eng Rev, 2024, 40(3): 1821-35. doi:10.1080/02648725.2023.2196846
|
| [14] |
Fu ZW, Liu F, Xu Q, et al. LMR-CBT: learning modality-fused representations with CB-Transformer for multimodal emotion recognition from unaligned multimodal sequences[J]. Front Comput Sci, 2023, 18(4): 184314. doi:10.1007/s11704-023-2444-y
|
| [15] |
Kalınkara Y, Talan T. Psychological balances in the digital world: dynamic relationships among social media addiction, depression, anxiety, academic self-efficacy, general belongingness, and life satisfaction[J]. J Genet Psychol, 2025, 186(2): 85-113. doi:10.1080/00221325.2024.2400342
|
| [16] |
Chandra Guntuku S, Buffone A, Jaidka K, et al. Understanding and measuring psychological stress using social media[J]. Proc Int AAAI Conf Web Soc Medium, 2019, 13: 214-25. doi:10.1609/icwsm.v13i01.3223
|
| [17] |
Wolfers LN, Utz S. Social media use, stress, and coping[J]. Curr Opin Psychol, 2022, 45: 101305. doi:10.1016/j.copsyc.2022.101305
|
| [18] |
Khoo LS, Lim MK, Chong CY, et al. Machine learning for multimodal mental health detection: a systematic review of passive sensing approaches[J]. Sensors (Basel), 2024, 24(2): 348. doi:10.3390/s24020348
|
| [19] |
Du C, Liu C, Balamurugan P, et al. Deep learning-based mental health monitoring scheme for college students using convolutional neural network[J]. Int J Artif Intell Tools, 2021, 30(6n08): 2140014.
|
| [20] |
Asad MM, Erum D, Churi P, et al. Effect of technostress on psychological well-being of post-graduate students: a perspective and correlational study of higher education management[J]. Int J Inf Manag Data Insights, 2023, 3(1): 100149. doi:10.1016/j.jjimei.2022.100149
|
| [21] |
Taylor JM. Psychometric analysis of the ten-item perceived stress scale[J]. Psychol Assess, 2015, 27(1): 90-101. doi:10.1037/a0038100
|
| [22] |
樊蓓蓓, 张春华. 大学生心理健康的标准及评估(英文)[J]. 中国临床康复, 2006, 46: 223-5.
|
| [23] |
Zhao F, Zhang CC, Geng BC. Deep multimodal data fusion[J]. ACM Comput Surv, 2024, 56(9): 1-36. doi:10.1145/3649447
|
| [24] |
Mukta MSH, Ahmad J, Zaman A, et al. Attention and meta-heuristic based general self-efficacy prediction model from multimodal social media dataset[J]. IEEE Access, 2024, 12: 36853-73. doi:10.1109/access.2024.3373558
|
| [25] |
Deng H, Yang ZG, Hao TY, et al. Multimodal affective computing with dense fusion transformer for inter- and intra-modality interactions[J]. IEEE Trans Multimed, 2022, 25: 6575-87. doi:10.1109/tmm.2022.3211197
|
| [26] |
Zhao YX, Cao XY, Lin JL, et al. Multimodal affective states recognition based on multiscale CNNs and biologically inspired decision fusion model[J]. IEEE Trans Affect Comput, 2023, 14(2): 1391-403. doi:10.1109/taffc.2021.3093923
|
| [27] |
Li WB, Tan RC, Xing Y, et al. A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks[J]. Sci Data, 2022, 9(1): 481. doi:10.1038/s41597-022-01557-2
|
| [28] |
Zhu LN, Zhu ZC, Zhang CW, et al. Multimodal sentiment analysis based on fusion methods: a survey[J]. Inf Fusion, 2023, 95: 306-25. doi:10.1016/j.inffus.2023.02.028
|
| [29] |
University DP, Saleem Abdullah SM, Abdulazeez AM, et al. Facial expression recognition based on deep learning convolution neural network: a review[J]. J Soft Comput Data Min, 2021, 2(1): 53-65.
|
| [30] |
耿亿霖, 臧 琳, 毛飞跃, 等. 基于U-Net神经网络的CALIPSO产品漏检层次分类[J]. 光学学报, 2024, 44(24): 97-106.
|
| [31] |
Fu LY, Li SW. A new semantic segmentation framework based on UNet[J]. Sensors (Basel), 2023, 23(19): 8123. doi:10.3390/s23198123
|
| [32] |
Wang X, Jing SH, Dai HF, et al. High-resolution remote sensing images semantic segmentation using improved UNet and SegNet[J]. Comput Electr Eng, 2023, 108: 108734. doi:10.1016/j.compeleceng.2023.108734
|
| [33] |
Abdollahi A, Pradhan B, Alamri AM. An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images[J]. Geocarto Int, 2022, 37(12): 3355-70. doi:10.1080/10106049.2020.1856199
|
| [34] |
Behera RK, Jena M, Rath SK, et al. Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data[J]. Inf Process Manag, 2021, 58(1): 102435. doi:10.1016/j.ipm.2020.102435
|
| [35] |
Lindemann B, Müller T, Vietz H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-5. doi:10.1016/j.procir.2021.03.088
|
| [36] |
Shanmuganathan V, Suresh A. LSTM-Markov based efficient anomaly detection algorithm for IoT environment[J]. Appl Soft Comput, 2023, 136: 110054. doi:10.1016/j.asoc.2023.110054
|
| [37] |
Wu J, Zhu TL, Zhu JH, et al. A optimized BERT for multimodal sentiment analysis[J]. ACM Trans Multimedia Comput Commun Appl, 2023, 19(2s): 1-12. doi:10.1145/3566126
|