南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1777-1790.doi: 10.12122/j.issn.1673-4254.2025.08.22

• • 上一篇    

II导联心电图中心肌梗死检测与定位:基于多尺度残差模块融合改进通道注意力模型

吴秋岑1(), 卢学麒1, 温耀棋1, 洪永1, 吴煜良2(), 陈超敏1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510515
    2.南方医科大学第十附属医院(东莞市人民医院)肿瘤放射治疗中心,广东 东莞 523059
  • 收稿日期:2025-01-03 出版日期:2025-08-20 发布日期:2025-09-05
  • 通讯作者: 吴煜良,陈超敏 E-mail:1251821148@qq.com;84833910@qq.com;571611621@qq.com
  • 作者简介:吴秋岑,在读硕士研究生,E-mail: 1251821148@qq.com
  • 基金资助:
    国家重点研发计划(2023YFC2414500);国家重点研发计划(2023YFC2414502)

A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention

Qiucen WU1(), Xueqi LU1, Yaoqi WEN1, Yong HONG1, Yuliang WU2(), Chaomin CHEN1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.Tumor Radiotherapy Center, Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
  • Received:2025-01-03 Online:2025-08-20 Published:2025-09-05
  • Contact: Yuliang WU, Chaomin CHEN E-mail:1251821148@qq.com;84833910@qq.com;571611621@qq.com

摘要:

目的 提高心肌梗死(MI)检测和定位准确性,为临床诊断提供辅助决策支持。 方法 本文提出了一种基于多尺度残差模块融合改进通道注意力模型(MSF-RB-MCA)。该模型利用II导联心电图(ECG)信号检测和定位MI,通过多尺度残差模块提取不同层次的特征信息,并引入改进通道注意力自动调整特征权重,增强模型对MI区域的关注能力,从而提高MI检测与定位的精度。 结果 使用公开的PTB数据集对提出的模型进行了5折交叉验证。在MI检测任务中,模型在测试集上的准确率、特异性、敏感度分别达到99.96%、99.84%和99.99%;在MI定位任务中,准确率、特异性、敏感度分别为99.81%、99.98%和99.65%。检测和定位结果均优于其他几种模型。 结论 本研究提出的MSF-RB-MCA模型在基于II导联ECG信号的MI检测与定位方面表现出色,展现出其在可穿戴设备领域中的广泛应用前景。

关键词: 心肌梗死, 深度学习, 多尺度, 残差模块, 改进通道注意力

Abstract:

Objective We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making. Methods The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block. A modified channel attention for automatic adjustment of the feature weights was introduced to enhance the model's ability to focus on the MI region, thereby improving the accuracy of MI detection and localization. Results A 5-fold cross-validation test of the model was performed using the publicly available Physikalisch-Technische Bundesanstalt (PTB) dataset. For MI detection, the model achieved an accuracy of 99.96% on the test set with a specificity of 99.84% and a sensitivity of 99.99%. For MI localization, the accuracy, specificity and sensitivity were 99.81%, 99.98% and 99.65%, respectively. The performances of the model for MI detection and localization were superior to those of other comparison models. Conclusion The proposed MSF-RB-MCA model shows excellent performance in AI detection and localization based on lead II ECG signals, demonstrating its great potential for application in wearable devices.

Key words: myocardial infarction, deep learning, multi-scale, residual block, modified channel attention