南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1777-1790.doi: 10.12122/j.issn.1673-4254.2025.08.22
• • 上一篇
吴秋岑1(), 卢学麒1, 温耀棋1, 洪永1, 吴煜良2(
), 陈超敏1(
)
收稿日期:
2025-01-03
出版日期:
2025-08-20
发布日期:
2025-09-05
通讯作者:
吴煜良,陈超敏
E-mail:1251821148@qq.com;84833910@qq.com;571611621@qq.com
作者简介:
吴秋岑,在读硕士研究生,E-mail: 1251821148@qq.com
基金资助:
Qiucen WU1(), Xueqi LU1, Yaoqi WEN1, Yong HONG1, Yuliang WU2(
), Chaomin CHEN1(
)
Received:
2025-01-03
Online:
2025-08-20
Published:
2025-09-05
Contact:
Yuliang WU, Chaomin CHEN
E-mail:1251821148@qq.com;84833910@qq.com;571611621@qq.com
摘要:
目的 提高心肌梗死(MI)检测和定位准确性,为临床诊断提供辅助决策支持。 方法 本文提出了一种基于多尺度残差模块融合改进通道注意力模型(MSF-RB-MCA)。该模型利用II导联心电图(ECG)信号检测和定位MI,通过多尺度残差模块提取不同层次的特征信息,并引入改进通道注意力自动调整特征权重,增强模型对MI区域的关注能力,从而提高MI检测与定位的精度。 结果 使用公开的PTB数据集对提出的模型进行了5折交叉验证。在MI检测任务中,模型在测试集上的准确率、特异性、敏感度分别达到99.96%、99.84%和99.99%;在MI定位任务中,准确率、特异性、敏感度分别为99.81%、99.98%和99.65%。检测和定位结果均优于其他几种模型。 结论 本研究提出的MSF-RB-MCA模型在基于II导联ECG信号的MI检测与定位方面表现出色,展现出其在可穿戴设备领域中的广泛应用前景。
吴秋岑, 卢学麒, 温耀棋, 洪永, 吴煜良, 陈超敏. II导联心电图中心肌梗死检测与定位:基于多尺度残差模块融合改进通道注意力模型[J]. 南方医科大学学报, 2025, 45(8): 1777-1790.
Qiucen WU, Xueqi LU, Yaoqi WEN, Yong HONG, Yuliang WU, Chaomin CHEN. A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention[J]. Journal of Southern Medical University, 2025, 45(8): 1777-1790.
Class | Number of subjects |
---|---|
AMI | 17 |
ALMI | 16 |
ASMI | 27 |
IMI | 30 |
ILMI | 23 |
IPMI | 1 |
IPLMI | 8 |
LMI | 1 |
PMI | 1 |
PLMI | 2 |
Unknown | 22 |
Total | 148 |
表1 PTB数据集中不同类型MI患者的数量
Tab.1 Number of subjects with different types of MI in the PTB dataset
Class | Number of subjects |
---|---|
AMI | 17 |
ALMI | 16 |
ASMI | 27 |
IMI | 30 |
ILMI | 23 |
IPMI | 1 |
IPLMI | 8 |
LMI | 1 |
PMI | 1 |
PLMI | 2 |
Unknown | 22 |
Total | 148 |
Type of disease | Number of patients | Number of heartbeats | Percentage (%) |
---|---|---|---|
MI | 148 | 49179 | 82.53 |
HC | 52 | 10409 | 17.47 |
Total | 200 | 59588 | 100 |
表2 PTB数据库患病种类的人数统计
Tab.2 Patient count statistics of disease types in the PTB database
Type of disease | Number of patients | Number of heartbeats | Percentage (%) |
---|---|---|---|
MI | 148 | 49179 | 82.53 |
HC | 52 | 10409 | 17.47 |
Total | 200 | 59588 | 100 |
Branch1 | Branch2 | Branch3 |
---|---|---|
Input (ECG signals) | ||
Conv1d (kernel=7, Number of kernel=64) | ||
BN | ||
ReLU | ||
MaxPool1d (kernel=3, Number of kernel=2) | ||
Backbone Block | ||
RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) |
RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) |
RB+MCA ( Number of kernel=256) | RB+MCA (Number of kernel=256) | RB+MCA (Number of kernel=256) |
RB+MCA ( Number of kernel=512) | RB+MCA (Number of kernel=512) | RB+MCA (Number of kernel=512) |
GAP | GAP | GAP |
Fusion | ||
Concatenation | ||
Flatten | ||
Dropout (P=0.2) | ||
FC |
表3 MSF-RB-MCA模型参数
Tab.3 Parameters of the MSF-RB-MCA algorithm
Branch1 | Branch2 | Branch3 |
---|---|---|
Input (ECG signals) | ||
Conv1d (kernel=7, Number of kernel=64) | ||
BN | ||
ReLU | ||
MaxPool1d (kernel=3, Number of kernel=2) | ||
Backbone Block | ||
RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) |
RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) |
RB+MCA ( Number of kernel=256) | RB+MCA (Number of kernel=256) | RB+MCA (Number of kernel=256) |
RB+MCA ( Number of kernel=512) | RB+MCA (Number of kernel=512) | RB+MCA (Number of kernel=512) |
GAP | GAP | GAP |
Fusion | ||
Concatenation | ||
Flatten | ||
Dropout (P=0.2) | ||
FC |
Type | Branch1 Kernel | Branch2 Kernel | Branch3 Kernel | Number of kernel |
---|---|---|---|---|
Input | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | - |
ReLU | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | |
ReLU | - | - | - | - |
MCA | - | - | - | - |
Residual connection | - | - | - | - |
表4 模型中3个分支的残差块参数
Tab.4 Details of the residual blocks in the 3 branches of the model
Type | Branch1 Kernel | Branch2 Kernel | Branch3 Kernel | Number of kernel |
---|---|---|---|---|
Input | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | - |
ReLU | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | |
ReLU | - | - | - | - |
MCA | - | - | - | - |
Residual connection | - | - | - | - |
Convolutional kernel size | Detection acc | Localization acc |
---|---|---|
1×3 1×5 1×7 | 99.94 | 99.79 |
1×5 1×7 1×9 | 99.94 | 99.76 |
1×7 1×9 1×11 | 99.95 | 99.80 |
1×9 1×11 1×13 | 99.96 | 99.78 |
1×11 1×13 1×15 | 99.96 | 99.81 |
1×13 1×15 1×17 | 99.93 | 99.80 |
1×15 1×17 1×19 | 99.95 | 99.77 |
表5 使用不同大小卷积核的准确率
Tab.5 Accuracy with different convolution kernel sizes (%)
Convolutional kernel size | Detection acc | Localization acc |
---|---|---|
1×3 1×5 1×7 | 99.94 | 99.79 |
1×5 1×7 1×9 | 99.94 | 99.76 |
1×7 1×9 1×11 | 99.95 | 99.80 |
1×9 1×11 1×13 | 99.96 | 99.78 |
1×11 1×13 1×15 | 99.96 | 99.81 |
1×13 1×15 1×17 | 99.93 | 99.80 |
1×15 1×17 1×19 | 99.95 | 99.77 |
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.97 | 99.95 | 99.97 | 99.99 | 99.98 |
2 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
3 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
4 | 99.95 | 99.86 | 99.97 | 99.97 | 99.97 |
5 | 99.93 | 99.66 | 99.99 | 99.93 | 99.96 |
Average | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
表6 MI检测的分类性能(5折交叉验证)
Tab.6 Classification performance of MI detection (5-fold cross-validation)(%)
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.97 | 99.95 | 99.97 | 99.99 | 99.98 |
2 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
3 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
4 | 99.95 | 99.86 | 99.97 | 99.97 | 99.97 |
5 | 99.93 | 99.66 | 99.99 | 99.93 | 99.96 |
Average | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
Original/Predicted | HC | MI | Acc (%) | Spe (%) | Sen (%) | Pre (%) | F1 (%) |
---|---|---|---|---|---|---|---|
HC | 10 392 | 17 | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
MI | 7 | 49 172 |
表7 MI检测的混淆矩阵和性能(5折交叉验证)
Tab.7 Confusion matrix and performance for MI detection (5-fold cross validation)
Original/Predicted | HC | MI | Acc (%) | Spe (%) | Sen (%) | Pre (%) | F1 (%) |
---|---|---|---|---|---|---|---|
HC | 10 392 | 17 | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
MI | 7 | 49 172 |
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.87 | 99.99 | 99.91 | 99.89 | 99.90 |
2 | 99.79 | 99.98 | 98.86 | 99.87 | 99.34 |
3 | 99.85 | 99.98 | 99.87 | 99.88 | 99.88 |
4 | 99.75 | 99.97 | 99.76 | 99.82 | 99.79 |
5 | 99.77 | 99.97 | 99.83 | 99.85 | 99.84 |
Average | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
表8 MI定位的分类性能(5折交叉验证)
Tab.8 Classification performance of MI localization (5-fold cross validation)(%)
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.87 | 99.99 | 99.91 | 99.89 | 99.90 |
2 | 99.79 | 99.98 | 98.86 | 99.87 | 99.34 |
3 | 99.85 | 99.98 | 99.87 | 99.88 | 99.88 |
4 | 99.75 | 99.97 | 99.76 | 99.82 | 99.79 |
5 | 99.77 | 99.97 | 99.83 | 99.85 | 99.84 |
Average | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Original/Predicted | HC | AMI | ALMI | ASMI | IMI | ILMI | IPMI | IPLMI | LMI | PMI | PLMI |
---|---|---|---|---|---|---|---|---|---|---|---|
HC | 10 401 | 0 | 1 | 4 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
AMI | 1 | 6287 | 5 | 7 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
ALMI | 1 | 4 | 6535 | 8 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
ASMI | 3 | 5 | 7 | 11 324 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
IMI | 0 | 3 | 8 | 5 | 12 518 | 4 | 0 | 2 | 0 | 0 | 0 |
ILMI | 2 | 2 | 6 | 2 | 7 | 8022 | 0 | 2 | 0 | 0 | 0 |
IPMI | 0 | 0 | 0 | 0 | 0 | 1 | 46 | 0 | 0 | 0 | 0 |
IPLMI | 0 | 1 | 1 | 1 | 3 | 1 | 0 | 2662 | 0 | 0 | 0 |
LMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 456 | 0 | 0 |
PMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 455 | 0 |
PLMI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 765 |
表9 MI定位的混淆矩阵 (5折交叉验证)
Tab.9 Confusion matrix for MI localization (5-fold cross-validation)
Original/Predicted | HC | AMI | ALMI | ASMI | IMI | ILMI | IPMI | IPLMI | LMI | PMI | PLMI |
---|---|---|---|---|---|---|---|---|---|---|---|
HC | 10 401 | 0 | 1 | 4 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
AMI | 1 | 6287 | 5 | 7 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
ALMI | 1 | 4 | 6535 | 8 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
ASMI | 3 | 5 | 7 | 11 324 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
IMI | 0 | 3 | 8 | 5 | 12 518 | 4 | 0 | 2 | 0 | 0 | 0 |
ILMI | 2 | 2 | 6 | 2 | 7 | 8022 | 0 | 2 | 0 | 0 | 0 |
IPMI | 0 | 0 | 0 | 0 | 0 | 1 | 46 | 0 | 0 | 0 | 0 |
IPLMI | 0 | 1 | 1 | 1 | 3 | 1 | 0 | 2662 | 0 | 0 | 0 |
LMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 456 | 0 | 0 |
PMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 455 | 0 |
PLMI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 765 |
Original/Predicted | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
HC | 99.97 | 99.99 | 99.92 | 99.93 | 99.93 |
AMI | 99.94 | 99.97 | 99.68 | 99.76 | 99.72 |
ALMI | 99.92 | 99.95 | 99.71 | 99.56 | 99.63 |
ASMI | 99.92 | 99.94 | 99.84 | 99.76 | 99.80 |
IMI | 99.93 | 99.96 | 99.82 | 99.84 | 99.83 |
ILMI | 99.94 | 99.97 | 99.74 | 99.83 | 99.78 |
IPMI | 100 | 100 | 97.78 | 100 | 98.82 |
IPLMI | 99.98 | 99.99 | 99.74 | 99.81 | 99.78 |
LMI | 100 | 100 | 100 | 100 | 100 |
PMI | 100 | 100 | 100 | 100 | 100 |
PLMI | 100 | 100 | 99.87 | 100 | 99.93 |
Overall | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
表10 各个类别MI定位的性能(5折交叉验证)
Tab.10 Performance of MI localization across different categories (5-fold cross-validation)(%)
Original/Predicted | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
HC | 99.97 | 99.99 | 99.92 | 99.93 | 99.93 |
AMI | 99.94 | 99.97 | 99.68 | 99.76 | 99.72 |
ALMI | 99.92 | 99.95 | 99.71 | 99.56 | 99.63 |
ASMI | 99.92 | 99.94 | 99.84 | 99.76 | 99.80 |
IMI | 99.93 | 99.96 | 99.82 | 99.84 | 99.83 |
ILMI | 99.94 | 99.97 | 99.74 | 99.83 | 99.78 |
IPMI | 100 | 100 | 97.78 | 100 | 98.82 |
IPLMI | 99.98 | 99.99 | 99.74 | 99.81 | 99.78 |
LMI | 100 | 100 | 100 | 100 | 100 |
PMI | 100 | 100 | 100 | 100 | 100 |
PLMI | 100 | 100 | 99.87 | 100 | 99.93 |
Overall | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Model | Input size | Params (M) | FLOPs (M) | Test time (ms) |
---|---|---|---|---|
ML-ResNet staked sparse autoencoder and treebagger[ | (1,651) | 5.22 | 167.82 | 3.10 |
ResNet[ | (1,651) | 3.85 | 224.58 | 2.89 |
MSF-RB-MCA | (1,651) | 2.70 | 36.68 | 0.62 |
表11 不同模型的复杂度比较
Tab.11 Comparison of complexity among different models
Model | Input size | Params (M) | FLOPs (M) | Test time (ms) |
---|---|---|---|---|
ML-ResNet staked sparse autoencoder and treebagger[ | (1,651) | 5.22 | 167.82 | 3.10 |
ResNet[ | (1,651) | 3.85 | 224.58 | 2.89 |
MSF-RB-MCA | (1,651) | 2.70 | 36.68 | 0.62 |
Model | Detection Acc | Localization Acc |
---|---|---|
MSF-RB-SENet | 99.51 | 99.69 |
MSF-RB-CBAM | 99.64 | 99.38 |
MSF-RB-CA | 99.70 | 99.59 |
MSF-RB-MCA | 99.96 | 99.81 |
表12 注意力机制效果对比
Tab.12 Comparison of attention mechanism effectiveness (%)
Model | Detection Acc | Localization Acc |
---|---|---|
MSF-RB-SENet | 99.51 | 99.69 |
MSF-RB-CBAM | 99.64 | 99.38 |
MSF-RB-CA | 99.70 | 99.59 |
MSF-RB-MCA | 99.96 | 99.81 |
Author | Lead | Framework | Datasets | Performance | |
---|---|---|---|---|---|
Detection | Localization | ||||
Ahmad et al[ | Lead II | MIF | PTB | Acc=98.4% Sen=95% | |
MFF | PTB | Acc=99.2% Sen=98% | |||
Acharya et al[ | Lead II | 11-CNN layer | PTB | Acc=95.22% Sen=95.49% Spe=94.19% | |
Feng et al[ | Lead II | Mutil-channel CNN-LSTM | PTB | Acc=95.4% Sen=98.2% Spe=96.8% | |
Zhang et al[ | Lead II | Staked sparse autoencoder and treebagger | PTB | Acc=99.90% Sen=99.98% Spe=99.52% | Acc=98.88% Sen=99.95% Spe=99.87% |
He et al[ | Lead II | ResNet18 | PTB | Acc=99.92% Sen=99.96% Spe=99.71% | Acc=99.68% Sen=99.66% Spe=99.97% |
This study | Lead II | MSF-RB-MCA | PTB | Acc=99.96% Sen=99.99% Spe=99.84% | Acc=99.81% Sen=99.65% Spe=99.98% |
表13 不同文献中分类算法的比较结果
Tab.13 Comparison of MI detection and localization performance from this study with other methods
Author | Lead | Framework | Datasets | Performance | |
---|---|---|---|---|---|
Detection | Localization | ||||
Ahmad et al[ | Lead II | MIF | PTB | Acc=98.4% Sen=95% | |
MFF | PTB | Acc=99.2% Sen=98% | |||
Acharya et al[ | Lead II | 11-CNN layer | PTB | Acc=95.22% Sen=95.49% Spe=94.19% | |
Feng et al[ | Lead II | Mutil-channel CNN-LSTM | PTB | Acc=95.4% Sen=98.2% Spe=96.8% | |
Zhang et al[ | Lead II | Staked sparse autoencoder and treebagger | PTB | Acc=99.90% Sen=99.98% Spe=99.52% | Acc=98.88% Sen=99.95% Spe=99.87% |
He et al[ | Lead II | ResNet18 | PTB | Acc=99.92% Sen=99.96% Spe=99.71% | Acc=99.68% Sen=99.66% Spe=99.97% |
This study | Lead II | MSF-RB-MCA | PTB | Acc=99.96% Sen=99.99% Spe=99.84% | Acc=99.81% Sen=99.65% Spe=99.98% |
[1] | World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2021-12-26]. . doi:10.1002/9781118910573.ch5 |
[2] | Acharya UR, Fujita H, Oh SL, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals[J]. Inf Sci, 2017, 415: 190-8. doi:10.1016/j.ins.2017.06.027 |
[3] | Cho Y, Kwon JM, Kim KH, et al. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography[J]. Sci Rep, 2020, 10(1): 20495. doi:10.1038/s41598-020-77599-6 |
[4] | Xiong P, Lee SM, Chan G. Deep learning for detecting and locating myocardial infarction by electrocardiogram: a literature review[J]. Front Cardiovasc Med, 2022, 9: 860032. doi:10.3389/fcvm.2022.860032 |
[5] | Jian JZ, Ger TR, Lai HH, et al. Detection of myocardial infarction using ECG and multi-scale feature concatenate[J]. Sensors: Basel, 2021, 21(5): 1906. doi:10.3390/s21051906 |
[6] | Liu XW, Wang H, Li ZJ, et al. Deep learning in ECG diagnosis: a review[J]. Knowl Based Syst, 2021, 227: 107187. doi:10.1016/j.knosys.2021.107187 |
[7] | Cai JX, Sun WW, Guan JF, et al. Multi-ECGNet for ECG arrythmia multi-label classification[J]. IEEE Access, 2020, 8: 110848-58. doi:10.1109/access.2020.3001284 |
[8] | Bhaskar NA. Performance analysis of support vector machine and neural networks in detection of myocardial infarction[J]. Procedia Comput Sci, 2015, 46: 20-30. doi:10.1016/j.procs.2015.01.043 |
[9] | Al-Naima FM, Ali AH, Mahdi SS. Data acquisition for myocardial infarction classification based on wavelets and Neural Networks[C]//2008 5th International Multi-Conference on Systems, Signals and Devices. July 20-22, 2008. Amman. IEEE, 2008: 1-6. doi:10.1109/ssd.2008.4632817 |
[10] | Sun L, Lu Y, Yang K, et al. ECG analysis using multiple instance learning for myocardial infarction detection[J]. IEEE Trans Biomed Eng, 2012, 59(12): 3348-56. doi:10.1109/tbme.2012.2213597 |
[11] | Liu B, Liu JK, Wang GQ, et al. A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection[J]. Comput Biol Med, 2015, 61: 178-84. doi:10.1016/j.compbiomed.2014.08.010 |
[12] | Chang PC, Lin JJ, Hsieh JC, et al. Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models[J]. Appl Soft Comput, 2012, 12(10): 3165-75. doi:10.1016/j.asoc.2012.06.004 |
[13] | Cao D, Lin D, Lv Y. ECG codebook model for Myocardial Infarction detection[C]//2014 10th International Conference on Natural Computation (ICNC). IEEE, 2014: 797-801. doi:10.1109/icnc.2014.6975939 |
[14] | Lu HL, Ong K, Chia P. An automated ECG classification system based on a neuro-fuzzy system[C]//Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163). Cambridge, MA, USA. IEEE, 2000: 387-390. |
[15] | Zhang DD, Yang S, Yuan XH, et al. Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram[J]. iScience, 2021, 24(4): 102373. doi:10.1016/j.isci.2021.102373 |
[16] | Jun TJ, Nguyen HM, Kang D, et al. ECG arrhythmia classification using a 2-D convolutional neural network[EB/OL]. 2018: 1804.06812. . doi:10.48550/arXiv.1804.06812 |
[17] | Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Trans Biomed Eng, 2016, 63(3): 664-75. doi:10.1109/tbme.2015.2468589 |
[18] | Al Rahhal MM, Bazi Y, Almubarak H, et al. Dense convolutional networks with focal loss and image generation for electrocardiogram classification[J]. IEEE Access, 2019, 7: 182225-37. doi:10.1109/access.2019.2960116 |
[19] | Zhang JS, Lin F, Xiong P, et al. Automated detection and localization of myocardial infarction with Staked sparse autoencoder and TreeBagger[J]. IEEE Access, 2019, 7: 70634-42. doi:10.1109/access.2019.2919068 |
[20] | Ahmad Z, Tabassum A, Guan L, et al. ECG heartbeat classification using multimodal fusion[J]. IEEE Access, 2021, 9: 100615-26. doi:10.1109/access.2021.3097614 |
[21] | Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215-20. doi:10.1161/01.cir.101.23.e215 |
[22] | Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG signal denoising[J]. Digit Signal Process, 2006, 16(3): 275-87. doi:10.1016/j.dsp.2005.12.003 |
[23] | Pan JP, Tompkins WJ. A real-time QRS detection algorithm[J]. IEEE Trans Biomed Eng, 1985, BME-32(3): 230-6. doi:10.1109/tbme.1985.325532 |
[24] | Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Brief Bioinform, 2018, 19(6): 1236-46. doi:10.1093/bib/bbx044 |
[25] | Fei NY, Gao YZ, Lu ZW, et al. Z-score normalization, hubness, and few-shot learning[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021. Montreal, QC, Canada. IEEE, 2021: 142-151. doi:10.1109/iccv48922.2021.00021 |
[26] | Zhang X, Lin MJ, Hong Y, et al. MSFT: a multi-scale feature-based transformer model for arrhythmia classification[J]. Biomed Signal Process Control, 2025, 100: 106968. doi:10.1016/j.bspc.2024.106968 |
[27] | Le KH, Pham HH, Nguyen TBT, et al. LightX3ECG: a lightweight and eXplainable deep learning system for 3-lead electrocardiogram classification[J]. Biomed Signal Process Control, 2023, 85: 104963. doi:10.1016/j.bspc.2023.104963 |
[28] | Cheng JY, Zou QX, Zhao YX. ECG signal classification based on deep CNN and BiLSTM[J]. BMC Med Inform Decis Mak, 2021, 21(1): 365. doi:10.1186/s12911-021-01736-y |
[29] | Sandler M, Howard A, Zhu ML, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520. doi:10.1109/cvpr.2018.00474 |
[30] | Kattenborn T, Leitloff J, Schiefer F, et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS J Photogramm Remote Sens, 2021, 173: 24-49. doi:10.1016/j.isprsjprs.2020.12.010 |
[31] | Targ S, Almeida D, Lyman K. Resnet in resnet: generalizing residual architectures[EB/OL]. 2016: 1603.08029. . |
[32] | He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 770-778. doi:10.1109/cvpr.2016.90 |
[33] | Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13708-13717. doi:10.1109/cvpr46437.2021.01350 |
[34] | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 7132-7141. doi:10.1109/cvpr.2018.00745 |
[35] | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[C]//Computer Vision – ECCV 2018. Cham: Springer, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
[36] | Van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. J Machine Learning Res, 2008, 9(11):1305-12. |
[37] | Feng K, Pi XT, Liu HY, et al. Myocardial infarction classification based on convolutional neural network and recurrent neural network[J]. Appl Sci, 2019, 9(9): 1879. doi:10.3390/app9091879 |
[1] | 郑子瑜, 杨夏颖, 吴圣杰, 张诗婕, 吕国荣, 柳培忠, 王珺, 何韶铮. 多特征融合的产时超声胎方位识别模型[J]. 南方医科大学学报, 2025, 45(7): 1563-1570. |
[2] | 李苏强, 王周阳, 产思贤, 周小龙. AConvLSTM U-Net:基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型[J]. 南方医科大学学报, 2025, 45(5): 1082-1092. |
[3] | 马振岩, 阿鑫, 赵蕾, 张洪博, 刘科, 赵依晴, 钱赓. 急性ST段抬高型心肌梗死经皮冠状动脉介入术后左心室不良重构的新型风险预测模型:基于心脏磁共振的多中心前瞻性研究[J]. 南方医科大学学报, 2025, 45(4): 669-683. |
[4] | 李文伟, 毛泽睿, 王永波, 边兆英, 黄静. 基于双向流场引导投影补全的稀疏角度锥束CT重建算法[J]. 南方医科大学学报, 2025, 45(2): 395-408. |
[5] | 任煜瀛, 黄凌霄, 杜方, 姚新波. 基于改进RT-DETR的多尺度特征融合的高效轻量皮肤病理检测方法[J]. 南方医科大学学报, 2025, 45(2): 409-421. |
[6] | 贺亚迪, 周炫汝, 金锦辉, 宋婷. 基于PE-CycleGAN网络的鼻咽癌自适应放疗CBCT-sCT生成研究[J]. 南方医科大学学报, 2025, 45(1): 179-186. |
[7] | 方威扬, 肖慧, 王爽, 林晓明, 陈超敏. 基于MRI影像和临床参数特征融合的深度学习模型预测术前肝细胞癌的细胞角蛋白19状态[J]. 南方医科大学学报, 2024, 44(9): 1738-1751. |
[8] | 欧嘉志, 詹长安, 杨丰. 一维卷积神经网络的自编码癫痫发作异常检测模型[J]. 南方医科大学学报, 2024, 44(9): 1796-1804. |
[9] | 刘科, 马振岩, 付磊, 张丽萍, 阿鑫, 肖少波, 张震, 张洪博, 赵蕾, 钱赓. 心脏磁共振成像整体纵向应变对急性ST段抬高型心肌梗死后左心室重构的预测价值:403例前瞻性研究[J]. 南方医科大学学报, 2024, 44(6): 1033-1039. |
[10] | 汪辰, 蒙铭强, 李明强, 王永波, 曾栋, 边兆英, 马建华. 基于双域Transformer耦合特征学习的CT截断数据重建模型[J]. 南方医科大学学报, 2024, 44(5): 950-959. |
[11] | 王泓森, 米利杰, 张越, 葛兰, 赖杰伟, 陈韬, 李健, 时向民, 修建成, 唐闵, 阳维, 郭军. 室上性心动过速机制的智能分类模型:基于十二导联穿戴式心电设备[J]. 南方医科大学学报, 2024, 44(5): 851-858. |
[12] | 王梓凝, 杨 明, 李双磊, 迟海涛, 王军惠, 肖苍松. 心肌梗死后心肌纤维化小鼠心肌线粒体功能和能量代谢重塑相关性的转录组学分析[J]. 南方医科大学学报, 2024, 44(4): 666-674. |
[13] | 崔佳宁, 刘文佳, 闫 非, 赵亚男, 陈伟杰, 罗春材, 张兴华, 李 涛. 心脏磁共振成像对急性ST段抬高型心肌梗死后左心室不良重构的预测价值[J]. 南方医科大学学报, 2024, 44(3): 553-562. |
[14] | 龙楷兴, 翁丹仪, 耿 舰, 路艳蒙, 周志涛, 曹 蕾. 基于多模态多示例学习的免疫介导性肾小球疾病自动分类方法[J]. 南方医科大学学报, 2024, 44(3): 585-593. |
[15] | 肖 慧, 方威扬, 林铭俊, 周振忠, 费洪文, 陈超敏. 基于两阶段分析的多尺度颈动脉斑块检测方法[J]. 南方医科大学学报, 2024, 44(2): 387-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||