南方医科大学学报 ›› 2026, Vol. 46 ›› Issue (1): 208-218.doi: 10.12122/j.issn.1673-4254.2026.01.23

• • 上一篇    下一篇

一种基于深度特征融合的可解释性12导联心电图自动诊断模型研究

卢学麒1(), 陈华元2(), 吴秋岑1, 温耀棋1, 刘国光3(), 陈超敏1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510515
    2.广州南方医疗设备综合检测有限责任公司,广东 广州 510515
    3.广东省医疗器械质量监督检验所,广东 广州 510663
  • 收稿日期:2025-06-24 出版日期:2026-01-20 发布日期:2026-01-16
  • 通讯作者: 刘国光,陈超敏 E-mail:415081161@qq.com;67936668@qq.com;571611621@qq.com
  • 作者简介:陈华元,工程师,E-mail: 415081161@qq.com
    陈华元,工程师,E-mail: 415081161@qq.com
    第一联系人:卢学麒,在读硕士研究生,E-mail: 1249416727@qq.com
    共同第一作者
  • 基金资助:
    国家重点研发计划(2023YFC2414500);国家重点研发计划(2023YFC2414502)

Evaluation of an interpretable 12-lead ECG automatic diagnosis model based on deep feature fusion

Xueqi LU1(), Huayuan CHEN2(), Qiucen WU1, Yaoqi WEN1, Guoguang LIU3(), Chaomin CHEN1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.Guangzhou Nanfang Medical Equipment Comprehensive Testing Co. , Ltd. , Guangzhou 510515, China
    3.Guangdong Medical Devices Quality Surveillance and Test Institute, Guangzhou 510663, China
  • Received:2025-06-24 Online:2026-01-20 Published:2026-01-16
  • Contact: Guoguang LIU, Chaomin CHEN E-mail:415081161@qq.com;67936668@qq.com;571611621@qq.com

摘要:

目的 提升12导联心电图(ECG)自动诊断的准确性和可信度。 方法 提出了一种基于深度特征融合的12导联ECG自动诊断模型(MRHL-ECGNet)。该模型包含多尺度特征提取前端、ResNet-34、全局特征混合模块及时间序列分析模块,首次将Hyena Hierarchy卷积算子应用于12导联心电图自动诊断任务中​​,以高效捕捉ECG中的长程依赖关系,并显著降低模型计算复杂度。同时采用基于积分梯度(IG)的可解释性分析技术,实现MRHL-ECGNet决策依据可视化。使用CPSC2018数据集对MRHL-ECGNet进行训练和测试,并采用多项定量评价指标与评估实验对MRHL-ECGNet进行全面评估。 结果 在测试集上对9种类别ECG的分类任务中,MRHL-ECGNet的准确率、AUC值、F1分数、精确率和召回率分别达到0.972、0.983、0.864、0.873和0.857,均优于其他对比模型,且在GPU上对单样本输出诊断结果所需的时间为0.007s,在CPU上也仅需0.156s,内存占用为67.196MB。 结论 本研究提出的MRHL-ECGNet不仅具有卓越的分类性能,还具备轻量化及可解释性的特点,在临床ECG辅助诊断中具有较高的应用价值。

关键词: 心电图自动诊断, 深度学习, Hyena Hierarchy卷积算子, 模型可解释性

Abstract:

Objective To enhance the accuracy and reliability of 12-lead electrocardiogram (ECG) automatic diagnosis. Methods Herein we propose a 12-lead ECG automatic diagnosis model based on deep feature fusion (MRHL-ECGNet), which consists of a multi-scale feature extraction front-end, ResNet-34, a global feature mixing module, and a time-series analysis module. The Hyena Hierarchy Convolution Operator was applied to the 12-lead ECG automatic diagnosis task for more efficient capture of long-range dependencies while reducing computational complexity. Integrated Gradients (IG)-based interpretability analysis technology was used to achieve visualization of the decision-making basis of MRHL-ECGNet. The CPSC2018 dataset was used to train and test MRHL-ECGNet, and its performance was assessed using multiple quantitative evaluation indicators and evaluation experiments. Results In the 9-class ECG classification task on the test set, MRHL-ECGNet achieved an accuracy of 0.972, an AUC of 0.983, an F1 score of 0.864, a precision of 0.873, and a recall of 0.857, all surpassing other comparative models. This model only took 0.007 s to output a diagnosis for a single sample on a GPU and 0.156 s on a CPU, with a memory footprint of 67.196 MB. Conclusion The proposed MRHL-ECGNet model demonstrates excellent classification performance in 12-lead ECG automatic diagnosis with a lightweight design and good interpretability, and thus has great potential for clinical application in ECG-aided diagnosis.

Key words: electrocardiogram automatic diagnosis, deep learning, Hyena Hierarchy Convolution Operator, interpretability of model