南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (6): 1280-1288.doi: 10.12122/j.issn.1673-4254.2025.06.17
赵华轩1(), 张桂潮1, 刘家荣3, 莫富添3, 李韬恩3, 类成勇3(
), 吕世栋2(
)
收稿日期:
2025-04-06
出版日期:
2025-06-20
发布日期:
2025-06-27
通讯作者:
类成勇,吕世栋
E-mail:2974463417@qq.com;345041047@qq.com;lsd990@smu.edu.cn
作者简介:
赵华轩,在读本科生,E-mail: 2974463417@qq.com
基金资助:
Huaxuan ZHAO1(), Guichao ZHANG1, Jiarong LIU3, Futian MO3, Taoen LI3, Chengyong LEI3(
), Shidong LÜ2(
)
Received:
2025-04-06
Online:
2025-06-20
Published:
2025-06-27
Contact:
Chengyong LEI, Shidong Lü
E-mail:2974463417@qq.com;345041047@qq.com;lsd990@smu.edu.cn
摘要:
目的 考察中国人群肾透明细胞癌患者肿瘤样本中免疫细胞浸润特征,并分析免疫细胞浸润与疾病分期及免疫治疗应答的相关性。 方法 收集南方医科大学南方医院2020年10月~2023年10月154例肾透明细胞癌患者的肿瘤样本和临床病理信息,通过免疫组织化学、免疫荧光等方法鉴定肿瘤组织中浸润免疫细胞类型,并同患者临床病理特征进行相关性分析。对其中22例患者的肿瘤组织构建了患者来源的肿瘤组织片段(PDTF)模型,利用PD-1单抗处理,后使用流式细胞术检测了T细胞活化情况,评估患者免疫治疗应答。 结果 我国肾透明细胞癌患者中,CD8+ T细胞、CD4+ T细胞和CD3+ T细胞浸润最丰富。病例相关分析表明,CD3+ T细胞(P=0.004)、PD-1+ T细胞(P=0.020)、CD68+ T细胞(P=0.049)、CD79+ T细胞(P=0.049)以及Tryptase+细胞(P=0.049)的浸润与更大的肿瘤体积(≥5 cm)呈正相关;CD4+ T细胞浸润程与肿瘤分期成负相关(P=0.026)。高ISUP分级患者CD3+ T细胞(P=0.023)、CD8+ T细胞(P=0.045)、PD-1+ T细胞(P=0.014)、CD20+ B细胞(P=0.020)、CD79+ B细胞(P=0.004)浸润浸润水平较高,但具有较低的Traptase+细胞浸润(P=0.001)。具有丰富免疫细胞浸润的患者也倾向更好的免疫治疗应答。 结论 本研究揭示了中国人群肾透明细胞癌患者免疫细胞浸润特征,发现不同患者免疫细胞浸润存在显著异质性,证实免疫细胞浸润程度与临床病理参数存在密切关联。
赵华轩, 张桂潮, 刘家荣, 莫富添, 李韬恩, 类成勇, 吕世栋. 肾透明细胞癌患者的免疫细胞浸润特征与临床病理参数具有相关性[J]. 南方医科大学学报, 2025, 45(6): 1280-1288.
Huaxuan ZHAO, Guichao ZHANG, Jiarong LIU, Futian MO, Taoen LI, Chengyong LEI, Shidong LÜ. Correlations of immune cell infiltration characteristics with clinicopathological parameters in patients with clear cell renal cell carcinoma[J]. Journal of Southern Medical University, 2025, 45(6): 1280-1288.
Antibody | Clone | Company | Dilution ratio |
---|---|---|---|
CD3 | MX036 | MXB Biotechnologies | Ready to use |
CD4 | SP35 | MXB Biotechnologies | Ready to use |
CD8 | SP16 | Amresco | Ready to use |
FOXP3 | 236A/E7 | Abcam | 1:250 |
CD68 | C68/684 | Abcam | 1:100 |
CD20 | EP459Y | Abcam | 1:300 |
CD79 | EP3618 | Abcam | 1:250 |
Tryptase | EPR8476 | Abcam | 1:2500 |
Programmed Death-1 | D4W2J | Cell Signaling Technology | 1:200 |
Programmed Death-Ligand 1 | EPR19759 | Abcam | 1:250 |
表1 免疫组化过程中所用的抗体信息
Tab.1 Antibodies used for immunohistochemistry
Antibody | Clone | Company | Dilution ratio |
---|---|---|---|
CD3 | MX036 | MXB Biotechnologies | Ready to use |
CD4 | SP35 | MXB Biotechnologies | Ready to use |
CD8 | SP16 | Amresco | Ready to use |
FOXP3 | 236A/E7 | Abcam | 1:250 |
CD68 | C68/684 | Abcam | 1:100 |
CD20 | EP459Y | Abcam | 1:300 |
CD79 | EP3618 | Abcam | 1:250 |
Tryptase | EPR8476 | Abcam | 1:2500 |
Programmed Death-1 | D4W2J | Cell Signaling Technology | 1:200 |
Programmed Death-Ligand 1 | EPR19759 | Abcam | 1:250 |
Antibody | Coupled fluorescein | Clone | Company |
---|---|---|---|
CD3 | FITC | UCHT1 | BD Biosciences |
CD4 | APC-CY7 | RPA-T4 | BD Biosciences |
CD8 | BV605 | SK1 | BD Biosciences |
CD278 (ICOS) | PE | DX29 | BD Biosciences |
CD134 (OX40) | PE-CY7 | ACT35 | BD Biosciences |
CD137 | BV421 | 4B4-1 | BD Biosciences |
CD25 | APC | M-A251 | BD Biosciences |
表2 流式细胞术中的抗体信息
Tab.2 Antibodies used for flow cytometry
Antibody | Coupled fluorescein | Clone | Company |
---|---|---|---|
CD3 | FITC | UCHT1 | BD Biosciences |
CD4 | APC-CY7 | RPA-T4 | BD Biosciences |
CD8 | BV605 | SK1 | BD Biosciences |
CD278 (ICOS) | PE | DX29 | BD Biosciences |
CD134 (OX40) | PE-CY7 | ACT35 | BD Biosciences |
CD137 | BV421 | 4B4-1 | BD Biosciences |
CD25 | APC | M-A251 | BD Biosciences |
Characteristic | Immunohistochemical cohort (n=154) | PDTF cohort (n=22) | P |
---|---|---|---|
Gender | >0.999 | ||
Male | 106 (68.8) | 15 (68.2) | |
Female | 48 (31.2) | 7 (31.8) | |
Age (year) | 0.811 | ||
<50 | 51 (33.1) | 8 (36.4) | |
≥50 | 103 (66.9) | 14 (63.6) | |
Tumor size (cm) | 0.819 | ||
<5 | 90 (58.4) | 12 (54.5) | |
≥5 | 64 (41.6) | 10 (45.5) | |
Tumor stage | 0.964 | ||
1a | 75 (48.7) | 10 (45.4) | |
1b | 49 (31.8) | 8 (36.4) | |
2a | 16 (10.4) | 2 (9.1) | |
3a | 11 (7.1) | 2 (9.1) | |
3b | 2 (1.3) | 0 (0) | |
4 | 1 (0.7) | 0 (0) | |
ISUP grade | 0.872 | ||
1 | 9 (5.8) | 2 (9.1) | |
2 | 125 (81.2) | 18 (81.8) | |
3 | 15 (9.7) | 2 (9.1) | |
4 | 5 (3.3) | 0 (0) | |
Clinical stage | >0.999 | ||
Ⅰ | 122 (79.2) | 18 (81.8) | |
Ⅱ | 17 (11.0) | 2 (9.1) | |
Ⅲ | 13 (8.5) | 2 (9.1) | |
IV | 2 (1.3) | 0 (0) |
表3 肾透明细胞癌患者免疫组化和PDTF队列的临床特征
Tab.3 Clinical characteristics of patients with ccRCC in immunohistochemical and PDTF cohorts [n (%)]
Characteristic | Immunohistochemical cohort (n=154) | PDTF cohort (n=22) | P |
---|---|---|---|
Gender | >0.999 | ||
Male | 106 (68.8) | 15 (68.2) | |
Female | 48 (31.2) | 7 (31.8) | |
Age (year) | 0.811 | ||
<50 | 51 (33.1) | 8 (36.4) | |
≥50 | 103 (66.9) | 14 (63.6) | |
Tumor size (cm) | 0.819 | ||
<5 | 90 (58.4) | 12 (54.5) | |
≥5 | 64 (41.6) | 10 (45.5) | |
Tumor stage | 0.964 | ||
1a | 75 (48.7) | 10 (45.4) | |
1b | 49 (31.8) | 8 (36.4) | |
2a | 16 (10.4) | 2 (9.1) | |
3a | 11 (7.1) | 2 (9.1) | |
3b | 2 (1.3) | 0 (0) | |
4 | 1 (0.7) | 0 (0) | |
ISUP grade | 0.872 | ||
1 | 9 (5.8) | 2 (9.1) | |
2 | 125 (81.2) | 18 (81.8) | |
3 | 15 (9.7) | 2 (9.1) | |
4 | 5 (3.3) | 0 (0) | |
Clinical stage | >0.999 | ||
Ⅰ | 122 (79.2) | 18 (81.8) | |
Ⅱ | 17 (11.0) | 2 (9.1) | |
Ⅲ | 13 (8.5) | 2 (9.1) | |
IV | 2 (1.3) | 0 (0) |
Immune marker | Subcellular localization | Present on |
---|---|---|
CD3+ | Cytomembrane | T lymphocytes |
CD4+ | Cytomembrane | T helper lymphocytes |
CD8+ | Cytomembrane | Cytotoxic T lymphocytes |
FOXP3+ | Cell nucleus | Regulatory T lymphocytes |
CD68+CD163- | Cytomembrane | M1 Macrophages |
CD68+CD163+ | Cytomembrane | M2 Macrophages |
CD20+CD79α- | Cytomembrane | B lymphocytes |
CD20-CD79α+ | Cytomembrane | Plasma cells |
Tryptase+ | Cytomembrane | Mast cells |
表4 免疫细胞标记物和所代表细胞的列表
Tab.4 List of immune cell markers and the represented cells
Immune marker | Subcellular localization | Present on |
---|---|---|
CD3+ | Cytomembrane | T lymphocytes |
CD4+ | Cytomembrane | T helper lymphocytes |
CD8+ | Cytomembrane | Cytotoxic T lymphocytes |
FOXP3+ | Cell nucleus | Regulatory T lymphocytes |
CD68+CD163- | Cytomembrane | M1 Macrophages |
CD68+CD163+ | Cytomembrane | M2 Macrophages |
CD20+CD79α- | Cytomembrane | B lymphocytes |
CD20-CD79α+ | Cytomembrane | Plasma cells |
Tryptase+ | Cytomembrane | Mast cells |
图1 肾细胞癌免疫浸润情况
Fig.1 Landscape of immune cell infiltration in clear cell renal cell carcinomas (ccRCC). A: The overall immune cell infiltration in 154 patients with ccRCC (each row represents an immune cell feature, and each column represents an individual. B: Percentage of each immune cell from the 154 patients with ccRCC.
图2 肿瘤浸润免疫细胞的免疫组化和免疫荧光特征
Fig.2 Immunohistochemical and immunofluorescence features of tumor-infiltrating immune cells. CD3, CD4, CD8, FOXP3, PD1, PDL1, Tryptase, CD68, CD20, and CD79 expressions were detected with immunohistochemistry, and M1 and M2 expressions were detected with immunofluorescence staining.
Index | Gender | P | Age (year) | P | Tumor size (cm) | P | Tumor stage | P | ISUP grade | P | Clinical stage | P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | <50 | ≥50 | <5 | ≥5 | 1,2 | 3,4 | 1, 2 | 3, 4 | Ⅰ-Ⅱ | Ⅲ-Ⅳ | |||||||
CD3 | 0.241 | >0.999 | 0.004 | 0.702 | 0.023 | 0.269 | ||||||||||||
High | 20 | 5 | 8 | 17 | 8 | 17 | 22 | 3 | 18 | 7 | 21 | 4 | ||||||
Low | 86 | 43 | 43 | 86 | 82 | 47 | 118 | 11 | 116 | 13 | 118 | 11 | ||||||
CD4 | 0.310 | 0.326 | 0.814 | 0.026 | 0.155 | 0.035 | ||||||||||||
High | 89 | 44 | 42 | 91 | 77 | 56 | 124 | 9 | 118 | 15 | 123 | 10 | ||||||
Low | 17 | 4 | 9 | 12 | 13 | 8 | 16 | 5 | 16 | 5 | 16 | 5 | ||||||
CD8 | 0.281 | 0.860 | 0.239 | 0.256 | 0.045 | 0.173 | ||||||||||||
High | 70 | 27 | 33 | 64 | 53 | 44 | 86 | 11 | 80 | 17 | 85 | 12 | ||||||
Low | 36 | 21 | 18 | 39 | 37 | 20 | 54 | 3 | 54 | 3 | 54 | 3 | ||||||
FOXP3 | 0.684 | 0.691 | 0.087 | >0.999 | 0.262 | >0.999 | ||||||||||||
High | 27 | 10 | 11 | 26 | 17 | 20 | 34 | 3 | 30 | 7 | 34 | 3 | ||||||
Low | 79 | 38 | 40 | 77 | 73 | 44 | 106 | 11 | 104 | 13 | 105 | 12 | ||||||
PD1 | 0.464 | >0.999 | 0.020 | 0.441 | 0.014 | 0.243 | ||||||||||||
High | 14 | 9 | 8 | 15 | 8 | 15 | 20 | 3 | 16 | 7 | 19 | 4 | ||||||
Low | 92 | 39 | 43 | 88 | 82 | 49 | 120 | 11 | 118 | 13 | 120 | 11 | ||||||
CD68 | 0.793 | 0.608 | 0.049 | >0.999 | 0.276 | 0.696 | ||||||||||||
High | 14 | 5 | 5 | 14 | 7 | 12 | 18 | 1 | 15 | 4 | 18 | 1 | ||||||
Low | 92 | 43 | 46 | 89 | 83 | 52 | 122 | 13 | 119 | 16 | 121 | 14 | ||||||
M1 | 0.428 | 0.699 | 0.710 | 0.756 | 0.013 | 0.539 | ||||||||||||
High | 76 | 38 | 39 | 75 | 68 | 46 | 104 | 10 | 104 | 10 | 104 | 10 | ||||||
Low | 30 | 10 | 12 | 28 | 22 | 18 | 36 | 4 | 30 | 10 | 35 | 5 | ||||||
M2 | >0.999 | 0.483 | 0.020 | 0.441 | >0.999 | 0.472 | ||||||||||||
High | 90 | 41 | 45 | 86 | 82 | 49 | 120 | 11 | 114 | 17 | 119 | 12 | ||||||
Low | 16 | 7 | 6 | 17 | 8 | 15 | 20 | 3 | 20 | 3 | 20 | 3 | ||||||
CD20 | 0.793 | 0.796 | >0.999 | 0.074 | 0.020 | 0.093 | ||||||||||||
High | 14 | 5 | 7 | 12 | 11 | 8 | 15 | 4 | 13 | 6 | 15 | 4 | ||||||
Low | 92 | 43 | 44 | 91 | 79 | 56 | 125 | 10 | 121 | 14 | 124 | 11 | ||||||
CD79 | >0.999 | >0.999 | 0.049 | 0.384 | 0.004 | 0.093 | ||||||||||||
High | 13 | 6 | 6 | 13 | 7 | 12 | 16 | 3 | 12 | 7 | 15 | 4 | ||||||
Low | 93 | 42 | 45 | 90 | 83 | 52 | 124 | 11 | 122 | 13 | 124 | 11 | ||||||
Tryptase | 0.057 | 0.351 | 0.049 | 0.357 | 0.001 | 0.147 | ||||||||||||
High | 69 | 39 | 33 | 75 | 69 | 39 | 100 | 8 | 101 | 7 | 100 | 8 | ||||||
Low | 37 | 9 | 18 | 28 | 21 | 25 | 40 | 6 | 33 | 13 | 39 | 7 | ||||||
PDL1 | 0.576 | >0.999 | 0.030 | 0.007 | 0.007 | 0.010 | ||||||||||||
High | 10 | 6 | 5 | 11 | 5 | 11 | 11 | 5 | 10 | 6 | 11 | 5 | ||||||
Low | 96 | 42 | 46 | 92 | 85 | 53 | 129 | 9 | 124 | 14 | 128 | 10 |
表5 TILs的密度与肾透明细胞癌的临床病理特征间的相关性
Tab.5 Correlation of the density of tumor-infiltrating lymphocytes (TILs) with the clinicopathological features of ccRCC patients
Index | Gender | P | Age (year) | P | Tumor size (cm) | P | Tumor stage | P | ISUP grade | P | Clinical stage | P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | <50 | ≥50 | <5 | ≥5 | 1,2 | 3,4 | 1, 2 | 3, 4 | Ⅰ-Ⅱ | Ⅲ-Ⅳ | |||||||
CD3 | 0.241 | >0.999 | 0.004 | 0.702 | 0.023 | 0.269 | ||||||||||||
High | 20 | 5 | 8 | 17 | 8 | 17 | 22 | 3 | 18 | 7 | 21 | 4 | ||||||
Low | 86 | 43 | 43 | 86 | 82 | 47 | 118 | 11 | 116 | 13 | 118 | 11 | ||||||
CD4 | 0.310 | 0.326 | 0.814 | 0.026 | 0.155 | 0.035 | ||||||||||||
High | 89 | 44 | 42 | 91 | 77 | 56 | 124 | 9 | 118 | 15 | 123 | 10 | ||||||
Low | 17 | 4 | 9 | 12 | 13 | 8 | 16 | 5 | 16 | 5 | 16 | 5 | ||||||
CD8 | 0.281 | 0.860 | 0.239 | 0.256 | 0.045 | 0.173 | ||||||||||||
High | 70 | 27 | 33 | 64 | 53 | 44 | 86 | 11 | 80 | 17 | 85 | 12 | ||||||
Low | 36 | 21 | 18 | 39 | 37 | 20 | 54 | 3 | 54 | 3 | 54 | 3 | ||||||
FOXP3 | 0.684 | 0.691 | 0.087 | >0.999 | 0.262 | >0.999 | ||||||||||||
High | 27 | 10 | 11 | 26 | 17 | 20 | 34 | 3 | 30 | 7 | 34 | 3 | ||||||
Low | 79 | 38 | 40 | 77 | 73 | 44 | 106 | 11 | 104 | 13 | 105 | 12 | ||||||
PD1 | 0.464 | >0.999 | 0.020 | 0.441 | 0.014 | 0.243 | ||||||||||||
High | 14 | 9 | 8 | 15 | 8 | 15 | 20 | 3 | 16 | 7 | 19 | 4 | ||||||
Low | 92 | 39 | 43 | 88 | 82 | 49 | 120 | 11 | 118 | 13 | 120 | 11 | ||||||
CD68 | 0.793 | 0.608 | 0.049 | >0.999 | 0.276 | 0.696 | ||||||||||||
High | 14 | 5 | 5 | 14 | 7 | 12 | 18 | 1 | 15 | 4 | 18 | 1 | ||||||
Low | 92 | 43 | 46 | 89 | 83 | 52 | 122 | 13 | 119 | 16 | 121 | 14 | ||||||
M1 | 0.428 | 0.699 | 0.710 | 0.756 | 0.013 | 0.539 | ||||||||||||
High | 76 | 38 | 39 | 75 | 68 | 46 | 104 | 10 | 104 | 10 | 104 | 10 | ||||||
Low | 30 | 10 | 12 | 28 | 22 | 18 | 36 | 4 | 30 | 10 | 35 | 5 | ||||||
M2 | >0.999 | 0.483 | 0.020 | 0.441 | >0.999 | 0.472 | ||||||||||||
High | 90 | 41 | 45 | 86 | 82 | 49 | 120 | 11 | 114 | 17 | 119 | 12 | ||||||
Low | 16 | 7 | 6 | 17 | 8 | 15 | 20 | 3 | 20 | 3 | 20 | 3 | ||||||
CD20 | 0.793 | 0.796 | >0.999 | 0.074 | 0.020 | 0.093 | ||||||||||||
High | 14 | 5 | 7 | 12 | 11 | 8 | 15 | 4 | 13 | 6 | 15 | 4 | ||||||
Low | 92 | 43 | 44 | 91 | 79 | 56 | 125 | 10 | 121 | 14 | 124 | 11 | ||||||
CD79 | >0.999 | >0.999 | 0.049 | 0.384 | 0.004 | 0.093 | ||||||||||||
High | 13 | 6 | 6 | 13 | 7 | 12 | 16 | 3 | 12 | 7 | 15 | 4 | ||||||
Low | 93 | 42 | 45 | 90 | 83 | 52 | 124 | 11 | 122 | 13 | 124 | 11 | ||||||
Tryptase | 0.057 | 0.351 | 0.049 | 0.357 | 0.001 | 0.147 | ||||||||||||
High | 69 | 39 | 33 | 75 | 69 | 39 | 100 | 8 | 101 | 7 | 100 | 8 | ||||||
Low | 37 | 9 | 18 | 28 | 21 | 25 | 40 | 6 | 33 | 13 | 39 | 7 | ||||||
PDL1 | 0.576 | >0.999 | 0.030 | 0.007 | 0.007 | 0.010 | ||||||||||||
High | 10 | 6 | 5 | 11 | 5 | 11 | 11 | 5 | 10 | 6 | 11 | 5 | ||||||
Low | 96 | 42 | 46 | 92 | 85 | 53 | 129 | 9 | 124 | 14 | 128 | 10 |
图3 抗PD-1治疗所引发的免疫学反应与免疫细胞浸润呈正相关
Fig.3 Immunological responses of PD-1 antibody treatment are positively correlated with immune cell infiltration in ccRCC. A: Heatmap displaying the z-score for the difference in positive T cell activation markers between PD-1 antibody treatment versus the control in the PDTF model (upper panel) and the density of immune cells (lower panel), with each column representing one individual. B: Representative immunohistochemical images of FOXP3+, PD1+, CD68+ immune cell infiltration in patients with PDTF-Rs and PDTF-NRs (Scale bar=100 μm).
1 | Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings[J]. Radiol Bras, 2015, 48(3): 166-74. doi:10.1590/0100-3984.2013.1927 |
2 | Schödel J, Grampp S, Maher ER, et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer[J]. Eur Urol, 2016, 69(4): 646-57. doi:10.1016/j.eururo.2015.08.007 |
3 | Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell carcinoma: 2014 update[J]. Eur Urol, 2015, 67(5): 913-24. doi:10.1016/j.eururo.2015.01.005 |
4 | Frank I, Blute ML, Cheville JC, et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score[J]. J Urol, 2002, 168(6): 2395-400. doi:10.1016/s0022-5347(05)64153-5 |
5 | Patard JJ, Kim HL, Lam JS, et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study[J]. J Clin Oncol, 2004, 22(16): 3316-22. doi:10.1200/jco.2004.09.104 |
6 | Wolff I, May M, Hoschke B, et al. Do we need new high-risk criteria for surgically treated renal cancer patients to improve the outcome of future clinical trials in the adjuvant setting? Results of a comprehensive analysis based on the multicenter CORONA database[J]. Eur J Surg Oncol EJSO, 2016, 42(5): 744-50. doi:10.1016/j.ejso.2016.01.009 |
7 | Meskawi M, Sun M, Trinh QD, et al. A review of integrated staging systems for renal cell carcinoma[J]. Eur Urol, 2012, 62(2): 303-14. doi:10.1016/j.eururo.2012.04.049 |
8 | Sánchez-Gastaldo A, Kempf E, González del Alba A, et al. Systemic treatment of renal cell cancer: a comprehensive review[J]. Cancer Treat Rev, 2017, 60: 77-89. doi:10.1016/j.ctrv.2017.08.010 |
9 | Porta C, Cosmai L, Leibovich BC, et al. The adjuvant treatment of kidney cancer: a multidisciplinary outlook[J]. Nat Rev Nephrol, 2019, 15(7): 423-33. doi:10.1038/s41581-019-0131-x |
10 | Pons-Tostivint E, Latouche A, Vaflard P, et al. Comparative analysis of durable responses on immune checkpoint inhibitors versus other systemic therapies: a pooled analysis of phase III trials[J]. JCO Precis Oncol, 2019, 3: 1-10. doi:10.1200/po.18.00114 |
11 | Borgeaud M, Sandoval J, Obeid M, et al. Novel targets for immune-checkpoint inhibition in cancer[J]. Cancer Treat Rev, 2023, 120: 102614. doi:10.1016/j.ctrv.2023.102614 |
12 | Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-80. doi:10.1038/s41568-020-0285-7 |
13 | Fortis SP, Sofopoulos M, Sotiriadou NN, et al. Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer[J]. J Immunother Cancer, 2017, 5: 39. doi:10.1186/s40425-017-0240-7 |
14 | Jiang YM, Zhang Q, Hu YF, et al. ImmunoScore signature: a prognostic and predictive tool in gastric cancer[J]. Ann Surg, 2018, 267(3): 504-13. doi:10.1097/sla.0000000000002116 |
15 | Sjöberg E, Frödin M, Lövrot J, et al. A minority-group of renal cell cancer patients with high infiltration of CD20+B-cells is associated with poor prognosis[J]. Br J Cancer, 2018, 119(7): 840-6. doi:10.1038/s41416-018-0266-8 |
16 | Zhang JW, Li SW, Liu FK, et al. Role of CD68 in tumor immunity and prognosis prediction in pan-cancer[J]. Sci Rep, 2022, 12(1): 7844. doi:10.1038/s41598-022-11503-2 |
17 | Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study[J]. Lancet, 2018, 391(10135): 2128-39. |
18 | Fridman WH, Pagès F, Sautès-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306. doi:10.1038/nrc3245 |
19 | Cros J, Sbidian E, Posseme K, et al. Nestin expression on tumour vessels and tumour-infiltrating macrophages define a poor prognosis subgroup of Pt1 clear cell renal cell carcinoma[J]. Virchows Arch, 2016, 469(3): 331-7. doi:10.1007/s00428-016-1973-2 |
20 | Voabil P, de Bruijn M, Roelofsen LM, et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer[J]. Nat Med, 2021, 27(7): 1250-61. doi:10.1038/s41591-021-01398-3 |
21 | Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer[J]. Trends Cell Biol, 2015, 25(4): 198-213. doi:10.1016/j.tcb.2014.11.006 |
22 | Joyce JA, Pollard JW. Microenvironmental regulation of metastasis[J]. Nat Rev Cancer, 2009, 9(4): 239-52. doi:10.1038/nrc2618 |
23 | Krishna C, DiNatale RG, Kuo FS, et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy[J]. Cancer Cell, 2021, 39(5): 662-77.e6. doi:10.1016/j.ccell.2021.03.007 |
24 | Giraldo NA, Becht E, Pagès F, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer[J]. Clin Cancer Res, 2015, 21(13): 3031-40. doi:10.1158/1078-0432.ccr-14-2926 |
25 | Lu ZW, Yin Y, Rao T, et al. Interaction of immune cells with renal cancer development: Mendelian randomization (MR) study[J]. BMC Cancer, 2024, 24(1): 439. doi:10.1186/s12885-024-12196-8 |
26 | Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment[J]. Nat Rev Clin Oncol, 2017, 14(12): 717-34. doi:10.1038/nrclinonc.2017.101 |
27 | Yao JX, Xi W, Zhu YJ, et al. Checkpoint molecule PD-1-assisted CD8+ T lymphocyte count in tumor microenvironment predicts overall survival of patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors[J]. Cancer Manag Res, 2018, 10: 3419-31. doi:10.2147/cmar.s172039 |
28 | Braun DA, Street K, Burke KP, et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma[J]. Cancer Cell, 2021, 39(5): 632-48.e8. doi:10.1016/j.ccell.2021.02.013 |
29 | Germano G, Frapolli R, Belgiovine C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2): 249-62. doi:10.1016/j.ccr.2013.01.008 |
30 | Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-69. doi:10.1038/nri2448 |
31 | Chen YN, Hu MR, Wang L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. doi:10.1016/j.ejphar.2020.173090 |
32 | Luo L, Zhou HY, Su H. Identification of 4-genes model in papillary renal cell tumor microenvironment based on comprehensive analysis[J]. BMC Cancer, 2021, 21(1): 553. doi:10.1186/s12885-021-08319-0 |
33 | Yue YW, Cai XY, Lu CH, et al. Unraveling the prognostic significance and molecular characteristics of tumor-infiltrating B lymphocytes in clear cell renal cell carcinoma through a comprehensive bioinformatics analysis[J]. Front Immunol, 2023, 14: 1238312. doi:10.3389/fimmu.2023.1238312 |
34 | Fu HC, Zhu Y, Wang YW, et al. Tumor infiltrating mast cells (TIMs) confers a marked survival advantage in nonmetastatic clear-cell renal cell carcinoma[J]. Ann Surg Oncol, 2017, 24(5): 1435-42. doi:10.1245/s10434-016-5702-5 |
35 | Oldford SA, Haidl ID, Howatt MA, et al. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth[J]. J Immunol, 2010, 185(11): 7067-76. doi:10.4049/jimmunol.1001137 |
[1] | 高俊杰, 叶开, 吴竞. 槲皮素通过调控TP53基因抑制肾透明细胞癌的增殖和迁移[J]. 南方医科大学学报, 2025, 45(2): 313-321. |
[2] | 陈晓睿, 魏青政, 张宗亮, 原江水, 宋卫青. 过表达带电多泡体蛋白2B基因抑制肾透明细胞癌细胞的增殖[J]. 南方医科大学学报, 2025, 45(1): 126-136. |
[3] | 张华华, 拓庆银, 冯芸, 韩继明. Holliday交叉识别蛋白是肾透明细胞癌的潜在预测和预后生物标记物[J]. 南方医科大学学报, 2024, 44(12): 2347-2358. |
[4] | 郝雨薇, 高 升, 张潇月, 崔梦秋, 丁效蕙, 王 鹤, 杨大为, 叶慧义, 王海屹. 透明细胞癌可能性评分v1.0和v2.0的应用价值对比[J]. 南方医科大学学报, 2023, 43(5): 800-806. |
[5] | 雷坤阳, 谢文杰, 孙 庭, 刘贻富, 王 旭. MiR-744-5p通过靶向 CCND1 抑制肾透明细胞癌细胞的增殖、侵袭和迁移[J]. 南方医科大学学报, 2022, 42(5): 712-717. |
[6] | 张海捷, 殷 夫, 陈梦林, 漆安琪, 杨丽洋, 崔维维, 杨姗姗, 文 戈. 基于术前CT影像组学列线图可预测Ⅰ~Ⅲ期肾透明性细胞癌术后复发[J]. 南方医科大学学报, 2021, 41(9): 1358-1365. |
[7] | 高俊杰, 杨丹丹, 曹若雪, 潘雪珊, 夏 俊. 天然虾青素治疗肾透明细胞癌的作用机制:基于网络药理学与生物信息学方法[J]. 南方医科大学学报, 2021, 41(12): 1763-1772. |
[8] | 牛少曦,马鑫,张瑜,巩会杰,高宇,李新涛,沈东来,王雷,姚远新,张旭. miR-223在肾透明细胞癌中的表达与功能[J]. 南方医科大学学报, 2015, 35(03): 338-. |
[9] | 谭万龙; 熊林; 郑少斌; 郁兆存; 齐桓; 杜跃军; 吴芃;. 肾透明细胞癌PDCD5表达及与预后的关系[J]. 南方医科大学学报, 2006, 26(09): 1316-1318. |
[10] | 熊林; 谭万龙; 郁兆存; 吴元东; 黄河; 赵国志; 朱文辉; 郑少斌;. TFAR19(PDCD5)蛋白在正常肾、肾透明细胞癌组织及正常膀胱、膀胱癌组织中的表达[J]. 南方医科大学学报, 2006, 26(06): 805-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||