1 |
Lee YL, Chien TW, Wang JC. Using Sankey diagrams to explore the trend of article citations in the field of bladder cancer: Research achievements in China higher than those in the United States[J]. Medicine: Baltimore, 2022, 101(34): e30217. doi:10.1097/md.0000000000030217
|
2 |
Witjes JA, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104. doi:10.1016/j.eururo.2020.03.055
|
3 |
Tsai YS, Wu TY, Ou CH, et al. Dynamic changes of quality of life in muscle-invasive bladder cancer survivors[J]. BMC Urol, 2022, 22(1): 126. doi:10.1186/s12894-022-01084-7
|
4 |
Ciummo SL, Sorrentino C, Fieni C, et al. Interleukin-30 subverts prostate cancer-endothelium crosstalk by fostering angiogenesis and activating immunoregulatory and oncogenic signaling pathways[J]. J Exp Clin Cancer Res, 2023, 42(1): 336. doi:10.1186/s13046-023-02902-y
|
5 |
Xie J, Zhang H, Wang K, et al. M6A-mediated-upregulation of lncRNA BLACAT3 promotes bladder cancer angiogenesis and hematogenous metastasis through YBX3 nuclear shuttling and enhancing NCF2 transcription[J]. Oncogene, 2023, 42(40): 2956-70. doi:10.1038/s41388-023-02814-3
|
6 |
Ruan R, Li L, Li X, et al. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment[J]. Mol Cancer, 2023, 22(1): 60. doi:10.1186/s12943-023-01761-7
|
7 |
Liu G, Chen T, Ding Z, et al. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment[J]. Cell Prolif, 2021, 54(4): e13009. doi:10.1111/cpr.13009
|
8 |
Hosni S, Kilian V, Klümper N, et al. Adipocyte precursor-derived NRG1 promotes resistance to FGFR inhibition in urothelial carcinoma[J]. Cancer Res, 2024, 84(5): 725-40. doi:10.1158/0008-5472.can-23-1398
|
9 |
Chen JC, Shih HC, Lin CY, et al. microRNA-631 resensitizes doxorubicin-resistant chondrosarcoma cells by targeting apelin[J]. Int J Mol Sci, 2023, 24(1): 839. doi:10.3390/ijms24010839
|
10 |
Frisch A, Kälin S, Monk R, et al. Apelin controls angiogenesis-dependent glioblastoma growth[J]. Int J Mol Sci, 2020, 21(11): E4179. doi:10.3390/ijms21114179
|
11 |
Lv DG, Luo XL, Chen Z, et al. Apelin/APJ signaling activates autophagy to promote human lung adenocarcinoma cell migration[J]. Life Sci, 2021, 281: 119763. doi:10.1016/j.lfs.2021.119763
|
12 |
Trang NTN, Lai CY, Tsai HC, et al. Apelin promotes osteosarcoma metastasis by upregulating PLOD2 expression via the Hippo signaling pathway and hsa_circ_0000004/miR-1303 axis[J]. Int J Biol Sci, 2023, 19(2): 412-25. doi:10.7150/ijbs.77688
|
13 |
Hennigs JK, Cao AQ, Li CG, et al. PPARγ-p53-mediated vasculoregenerative program to reverse pulmonary hypertension[J]. Circ Res, 2021, 128(3): 401-18. doi:10.1161/circresaha.119.316339
|
14 |
Cardoso Dos Santos LM, Azar P, Brun C, et al. Apelin is expressed in intimal smooth muscle cells and promotes their phenotypic transition[J]. Sci Rep, 2023, 13(1): 18736. doi:10.1038/s41598-023-45470-z
|
15 |
Shen J, Feng J, Wu Z, et al. Apelin prevents and alleviates crystalline silica-induced pulmonary fibrosis via inhibiting transforming growth factor beta 1-triggered fibroblast activation[J]. Int J Biol Sci, 2023, 19(13): 4004-19. doi:10.7150/ijbs.81436
|
16 |
Jin S, Wang Y, Ma L, et al. Feedback interaction between apelin and endoplasmic reticulum stress in the rat myocardium[J]. J Cardiovasc Pharmacol, 2023, 81(1): 21-34. doi:10.1097/fjc.0000000000001369
|
17 |
Wang YH, Wang G, Liu XJ, et al. Inhibition of APLN suppresses cell proliferation and migration and promotes cell apoptosis in esophageal cancer cells in vitro, through activating PI3K/mTOR signaling pathway[J]. Eur J Histochem, 2022, 66(3):308-15. doi:10.4081/ejh.2022.3336
|
18 |
Chen Y, Lin X, Zheng J, et al. APLN: a potential novel biomarker for cervical cancer[J]. Sci Prog, 2021, 104(2): 368504211011341. doi:10.1177/00368504211011341
|
19 |
Sugimoto K, Yokokawa T, Misaka T, et al. High-fat diet attenuates the improvement of hypoxia-induced pulmonary hypertension in mice during reoxygenation[J]. BMC Cardiovasc Disord, 2021, 21(1): 331. doi:10.21203/rs.3.rs-139169/v1
|
20 |
Zhou Y, Xu R, Luo J, et al. Dysregulation of miR-204-5p/APLN axis affects malignant progression and cell stemness of esophageal cancer[J]. Mutat Res, 2022, 825: 111791. doi:10.1016/j.mrfmmm.2022.111791
|
21 |
Wang Q, Wang BY, Zhang WJ, et al. APLN promotes the proliferation, migration, and glycolysis of cervical cancer through the PI3K/AKT/mTOR pathway[J]. Arch Biochem Biophys, 2024, 755: 109983. doi:10.1016/j.abb.2024.109983
|
22 |
Larionova I, Kazakova E, Gerashchenko T, et al. New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis[J]. Cancers: Basel, 2021, 13(13): 3253. doi:10.3390/cancers13133253
|
23 |
Anna G, Alessio N, Davide C, et al. Role of TGFβ1 and WNT6 in FGF2 and BMP4-driven endothelial differentiation of murine embryonic stem cells[J]. Angiogenesis, 2021, 25(1): 1-16. doi:10.1007/s10456-021-09815-4
|
24 |
Huang YC, Chen WC, Yu CL, et al. FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression[J]. Biochem Pharmacol, 2023, 218: 115853. doi:10.1016/j.bcp.2023.115853
|
25 |
Wang Y, Sun Q, Ye Y, et al. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis[J]. JCI Insight, 2022, 7(10): e157874. doi:10.1172/jci.insight.157874
|
26 |
Zheng C, Shi CJ, Du LJ, et al. Expression of fibroblast growth factor receptor like 1 protein in oral squamous cell carcinoma and its influence on tumor cell proliferation and migration[J]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2020, 38(5): 558-65. doi:10.7518/hxkq.2020.05.015
|
27 |
Cheng C, Wang J, Xu P, et al. Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer[J]. Nat Cancer, 2022, 3(5): 565-80. doi:10.1038/s43018-022-00380-3
|
28 |
Giordano M, Decio A, Battistini C, et al. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 319. doi:10.1186/s13046-021-02117-z
|
29 |
Biswas PK, Kwak Y, Kim A, et al. TTYH3 modulates bladder cancer proliferation and metastasis via FGFR1/H-ras/A-raf/MEK/ERK pathway[J]. Int J Mol Sci, 2022, 23(18): 10496. doi:10.3390/ijms231810496
|
30 |
Nian C, Gan X, Liu Q, et al. Synthesis and anti-gastric cancer activity by targeting FGFR1 pathway of novel asymmetric bis-Chalcone compounds[J]. Curr Med Chem, 2024, 31(39): 6521-41. doi:10.2174/0109298673298420240530093525
|