南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (12): 2708-2717.doi: 10.12122/j.issn.1673-4254.2025.12.18

• • 上一篇    

ResLSTM-TemporalSE:多导联心电信号的自动分类

渠梦(), 傅蓉()   

  1. 南方医科大学生物医学工程学院,广东 广州 510515
  • 收稿日期:2025-05-22 出版日期:2025-12-20 发布日期:2025-12-22
  • 通讯作者: 傅蓉 E-mail:1228772136@qq.com;834460113@qq.com
  • 作者简介:渠 梦,在读硕士研究生,E-mail: 1228772136@qq.com
  • 基金资助:
    国家重点研发计划项目“柔性穿戴式医疗器械测试与评价装置开发”(2023YFC2414502);广州市重点研发计划农业和社会发展科技专题项目“基于知识图谱的自主AI判图心电检测技术与心电数据库的研发”(2023B03J1337)

ResLSTM-TemporalSE: an automated classification model for multi-lead ECG signals

Meng QU(), Rong FU()   

  1. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • Received:2025-05-22 Online:2025-12-20 Published:2025-12-22
  • Contact: Rong FU E-mail:1228772136@qq.com;834460113@qq.com

摘要:

目的 针对12导联心电信号(ECG)自动分类任务,提出一种高效的深度学习模型,以提高分类准确率。 方法 设计了一种新型的ResLSTM-TemporalSE网络模型。该模型采用多层残差长短期记忆网络(ResLSTM),在LSTM层间引入跨层跳跃连接,构建时序特征的残差学习路径,并在传统压缩-激励模块(SE)中引入时序注意力机制,增强通道表达能力的同时捕捉ECG信号的时间依赖性,构建一个高效的多层次特征表达框架。该模型在CPSC2018数据集和南方医科大学第七附属医院私有数据集进行验证。 结果 模型在CPSC2018测试集上分类准确率达到99.70%,精确度、召回率和F1值分别为0.9966、0.9370和0.9653,在临床私有数据集上分类准确率达到82.77%,精确度、召回率和F1值分别为0.6811、0.8961和0.7723。通过消融实验验证残差连接与时序注意力模块对模型性能的贡献。 结论 ResLSTM-TemporalSE模型能够有效融合ECG信号的时空特征,在CPSC2018数据集上表现出卓越的分类性能,同时在真实临床环境中保持较强的泛化能力,为心电信号的自动分析提供了可靠的技术方案,具有潜在的临床应用价值。

关键词: 心电信号分类, 深度学习, 残差网络, 长短期记忆网络, 压缩激励模块, ResLSTM-TemporalSE

Abstract:

Objective We propose an efficient deep learning model to improve the classification accuracy in automatic classification tasks of 12-lead electrocardiogram (ECG) signals. Methods We designed a new ResLSTM-TemporalSE network architecture by incorporating a multi-layer Residual Long Short-Term Memory (ResLSTM) structure and introducing skip connections between LSTM layers to establish residual learning pathways for the temporal features. A temporal attention mechanism was integrated into the traditional Squeeze-and-Excitation (SE) module to enhance channel-wise feature representation while capturing long-term temporal dependencies within ECG signals, thereby an efficient hierarchical feature extraction framework was constructed. The model was validated using the public CPSC2018 dataset and a private clinical dataset from the Seventh Affiliated Hospital of Southern Medical University. Results The experimental results demonstrated that the model achieved a classification accuracy of 99.70% on the CPSC2018 test set, with precision, recall, and F1-score values of 0.9966, 0.9370, and 0.9653, respectively. On the private clinical dataset, it attained an accuracy of 82.77%, with precision, recall, and F1-score values of 0.6811, 0.8961, and 0.7723. Ablation studies confirmed the significant contributions of both the residual connections and the temporal attention module to model performance. Conclusion The ResLSTM-TemporalSE model effectively integrates spatiotemporal features of the ECG signals and demonstrates superior classification performance on the CPSC2018 benchmark while maintaining strong generalization capabilities in real-world clinical settings. This framework provides a robust solution for automated ECG analysis and holds significant promise for clinical applications.

Key words: electrocardiogram classification, deep learning, ResNet, Long Short-Term Memory network, Squeeze-and-Excitation module, ResLSTM-TemporalSE