1 |
PATEL S R. Obstructive Sleep Apnea [J]. Ann Intern Med, 2019, 171(11): ITC81-96.
|
2 |
Lv RJ, Liu XY, Zhang Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218.
|
3 |
Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea: a review[J]. JAMA, 2020, 323(14): 1389-400.
|
4 |
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome[J]. Obesity, 2023, 31(4): 900-11.
|
5 |
Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults[J]. Am J Epidemiol, 2013, 177(9): 1006-14.
|
6 |
Drager LF, Brunoni AR, Jenner R, et al. Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials[J]. Thorax, 2015, 70(3): 258-64.
|
7 |
Feng Y, Maislin D, Keenan BT, et al. Physical activity following positive airway pressure treatment in adults with and without obesity and with moderate-severe obstructive sleep apnea[J]. J Clin Sleep Med, 2018, 14(10): 1705-15.
|
8 |
Quan SF, Budhiraja R, Clarke DP, et al. Impact of treatment with continuous positive airway pressure (CPAP) on weight in obstructive sleep apnea[J]. J Clin Sleep Med, 2013, 9(10): 989-93.
|
9 |
Zhang YY, Chua S Jr. Leptin function and regulation[J]. Compr Physiol, 2017, 8(1): 351-69.
|
10 |
Zhu CJ, Jiang ZY, Xu YZ, et al. Profound and redundant functions of arcuate neurons in obesity development[J]. Nat Metab, 2020, 2(8): 763-74.
|
11 |
Ulukavak Ciftci T, Kokturk O, Bukan N, et al. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome[J]. Respiration, 2005, 72(4): 395-401.
|
12 |
Imayama I, Prasad B. Role of leptin in obstructive sleep apnea[J]. Ann Am Thorac Soc, 2017, 14(11): 1607-21.
|
13 |
Harsch IA, Konturek PC, Koebnick C, et al. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment[J]. Eur Respir J, 2003, 22(2): 251-7.
|
14 |
Chen X, Niu X, Xiao Y, et al. Effect of continuous positive airway pressure on leptin levels in patients with obstructive sleep apnea: a meta-analysis[J]. Otolaryngol Head Neck Surg, 2015, 152(4): 610-8.
|
15 |
de Santis S, Cambi J, Tatti P, et al. Changes in ghrelin, leptin and pro-inflammatory cytokines after therapy in Obstructive Sleep Apnea Syndrome (OSAS) patients[J]. Pol Otolaryngol, 2015, 69(2): 1-8.
|
16 |
Tachikawa R, Ikeda K, Minami T, et al. Changes in energy metabolism after continuous positive airway pressure for obstructive sleep apnea[J]. Am J Respir Crit Care Med, 2016, 194(6): 729-38.
|
17 |
Ciriello J, Moreau JM, McCoy A, et al. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat[J]. Neurosci Lett, 2016, 626: 112-8.
|
18 |
Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-98.
|
19 |
Moreau JM, Ciriello J. Effects of acute intermittent hypoxia on energy balance and hypothalamic feeding pathways[J]. Neuroscience, 2013, 253: 350-60.
|
20 |
Gozal D, Gileles-Hillel A, Cortese R, et al. Visceral white adipose tissue after chronic intermittent and sustained hypoxia in mice[J]. Am J Respir Cell Mol Biol, 2017, 56(4): 477-87.
|
21 |
Wang HP, Wang Y, Xia TL, et al. Pathogenesis of abnormal hepatic lipid metabolism induced by chronic intermittent hypoxia in rats and the therapeutic effect of N-acetylcysteine[J]. Med Sci Monit, 2018, 24: 4583-91.
|
22 |
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(2): L129-40.
|
23 |
Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(10): R1181-97.
|
24 |
Yue XP, Zhou YZ, Qiao M, et al. Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain[J]. Alzheimers Res Ther, 2021, 13(1): 194.
|
25 |
Rogers RS, Wang H, Durham TJ, et al. Hypoxia extends lifespan and neurological function in a mouse model of aging[J]. PLoS Biol, 2023, 21(5): e3002117.
|
26 |
Panza GS, Puri S, Lin HS, et al. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension[J]. Am J Respir Crit Care Med, 2022, 205(8): 949-58.
|
27 |
Saeed O, Bhatia V, Formica P, et al. Improved exercise performance and skeletal muscle strength after simulated altitude exposure: a novel approach for patients with chronic heart failure[J]. J Card Fail, 2012, 18(5): 387-91.
|
28 |
Drager LF, Li JG, Reinke C, et al. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity[J]. Obesity, 2011, 19(11): 2167-74.
|
29 |
Valverde-Pérez E, Olea E, Obeso A, et al. Intermittent hypoxia and diet-induced obesity on the intestinal wall morphology in a murine model of sleep apnea[J]. Adv Exp Med Biol, 2023, 1427: 89-97.
|
30 |
Phillips BG, Kato M, Narkiewicz K, et al. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea[J]. Am J Physiol Heart Circ Physiol, 2000, 279(1): H234-7.
|
31 |
Zhao SG, Zhu Y, Schultz RD, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy[J]. Cell Metab, 2019, 30(4): 706-19.e6.
|
32 |
Zhao SG, Kusminski CM, Elmquist JK, et al. Leptin: less is more[J]. Diabetes, 2020, 69(5): 823-9.
|
33 |
Pretz D, Le Foll C, Rizwan MZ, et al. Hyperleptinemia as a contributing factor for the impairment of glucose intolerance in obesity[J]. FASEB J, 2021, 35(2): e21216.
|
34 |
Friedman JM. Leptin and the endocrine control of energy balance[J]. Nat Metab, 2019, 1(8): 754-64.
|
35 |
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system[J]. Biochem Cell Biol, 2011, 89(1): 61-73.
|
36 |
de Git KCG, Adan RAH. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation[J]. Obes Rev, 2015, 16(3): 207-24.
|
37 |
Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice[J]. Front Neuroendocrinol, 2015, 39: 59-65.
|
38 |
Gileles-Hillel A, Almendros I, Khalyfa A, et al. Prolonged exposures to intermittent hypoxia promote visceral white adipose tissue inflammation in a murine model of severe sleep apnea: effect of normoxic recovery[J]. Sleep, 2017, 40(3): 1093.
|
39 |
Bailly S, Daabek N, Jullian-Desayes I, et al. Partial failure of CPAP treatment for sleep apnoea: analysis of the French national sleep database[J]. Respirology, 2020, 25(1): 104-11.
|
40 |
Siopi D, Steiropoulos P. The influence of CPAP therapy on basal metabolic rate and physical activity in obese patients with obstructive sleep apnea[J]. Nutrients, 2023, 15(20): 4446.
|
41 |
Batool-Anwar S, Goodwin JL, Drescher AA, et al. Impact of CPAP on activity patterns and diet in patients with obstructive sleep apnea (OSA)[J]. J Clin Sleep Med, 2014, 10(5): 465-72.
|
42 |
Perrini S, Cignarelli A, Quaranta VN, et al. Correction of intermittent hypoxia reduces inflammation in obese subjects with obstructive sleep apnea[J]. JCI Insight, 2017, 2(17): e94379.
|