南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (9): 1685-1695.doi: 10.12122/j.issn.1673-4254.2024.09.08
纪凯1,2(), 于冠宇2, 周乐其2, 张天帅2, 凌潜龙1, 满文江1,2, 朱冰1(
), 张卫2(
)
收稿日期:
2024-05-19
出版日期:
2024-09-20
发布日期:
2024-10-31
通讯作者:
朱冰,张卫
E-mail:1361679354@qq.com;bbmczhubing@163.com;weizhang2000cn@163.com
作者简介:
纪 凯,在读硕士研究生,E-mail: 1361679354@qq.com
基金资助:
Kai JI1,2(), Guanyu YU2, Leqi ZHOU2, Tianshuai ZHANG2, Qianlong LING1, Wenjiang MAN1,2, Bing ZHU1(
), Wei ZHANG2(
)
Received:
2024-05-19
Online:
2024-09-20
Published:
2024-10-31
Contact:
Bing ZHU, Wei ZHANG
E-mail:1361679354@qq.com;bbmczhubing@163.com;weizhang2000cn@163.com
Supported by:
摘要:
目的 通过生物信息学和细胞实验探究HNRNP A1在结直肠癌中的临床意义及其在肿瘤组织中的表达情况。 方法 使用HPA、TIMER和GEPIA数据库,分析HNRNP A1在结直肠癌组织中的表达水平,并检验HNRNP A1与Ki-67/VEGFA在结直肠癌中表达的相关性。使用Kaplan-Meier Plotter数据库评估HNRNP A1 mRNA水平与结直肠癌患者生存率之间的联系。通过基因富集途径分析,预测HNRNP A1在结直肠癌中的潜在生物学作用。通过免疫组织化学(IHC)和Western blotting技术检测HNRNP A1在结直肠癌及其癌旁组织中的蛋白表达。利用TIMER数据库网站对HNRNP A1在免疫浸润细胞中的表达进行预测。使用慢病毒敲低RKO/Caco2细胞中HNRNP A1的表达;通过CCK-8实验检测细胞增殖,使用克隆形成实验检测HNRNP A1对细胞增殖能力的影响;利用细胞划痕实验和Transwell迁移实验评估两组细胞(RKO/Caco2-nc、RKO/Caco2-sh)的迁移能力。最后验证HNRNP A1小分子抑制剂(VPC-80051)对肿瘤细胞增殖的影响。 结果 在结直肠癌(CRC)肿瘤组织中HNRNP A1的表达显著上调并与患者的不良预后显著相关(P<0.01)。TIMER数据库的分析结果指出,HNRNP A1与肿瘤微环境中的免疫细胞之间存在一定的相关性。根据GEPIA数据库的分析,CRC组织中HNRNP A1、MKI67和VEGFA的表达均较高(P<0.05),且HNRNP A1与这两者之间存在正相关关系。通过Kaplan-Meier Plotter进行的生存分析表明,在CRC中,HNRNP A1的高表达预示着较差的总生存期(P=0.0081)和无进展生存期(P=0.012)。基因富集通路分析的数据显示,HNRNP A1可能参与到多个与CRC进展相关的生物途径中。HNRNP A1影响RKO/Caco2细胞的增殖和迁移能力,对照组(RKO/Caco2-nc)的增殖能力、克隆形成能力和迁移能力均优于实验组(RKO/Caco2-sh),差异有统计学意义(P<0.05);HNRNP A1小分子抑制剂(VPC-80051)可以有效抑制结直肠癌增殖活性,并具有时间和浓度依赖性;IHC显示HNRNP A1在结直肠癌中高表达,且与肿瘤分期有密切关系(P<0.0001)。 结论 HNRNP A1基因在CRC组织中表达较高,并可调节细胞的增殖和迁移能力,与不良预后密切相关,同时HNRNP A1小分子抑制剂(VPC-80051)也可以抑制结直肠癌细胞的增殖,因而可作为CRC治疗过程中新的潜在治疗靶点。
纪凯, 于冠宇, 周乐其, 张天帅, 凌潜龙, 满文江, 朱冰, 张卫. HNRNPA1基因在结直肠癌组织中高表达及其潜在的诊断和治疗价值[J]. 南方医科大学学报, 2024, 44(9): 1685-1695.
Kai JI, Guanyu YU, Leqi ZHOU, Tianshuai ZHANG, Qianlong LING, Wenjiang MAN, Bing ZHU, Wei ZHANG. HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target[J]. Journal of Southern Medical University, 2024, 44(9): 1685-1695.
Gene | Primerse quence (5'-3') | |
---|---|---|
Forward | Reverse | |
HNRNP A1 | TCAGAGTCTCCTAAAGAGCCC | ACCTTGTGTGGCCTTGCAT |
GAPDH | ACAACTTTGGTATCGTGGAAGG | GCCATCACGCCACAGTTTC |
表1 RT-PCR对差异表达mRNA的引物序列
Tab.1 Primer sequence for qRT-PCR of HNRNP A1
Gene | Primerse quence (5'-3') | |
---|---|---|
Forward | Reverse | |
HNRNP A1 | TCAGAGTCTCCTAAAGAGCCC | ACCTTGTGTGGCCTTGCAT |
GAPDH | ACAACTTTGGTATCGTGGAAGG | GCCATCACGCCACAGTTTC |
图1 HNRNP家族成员在结直肠癌中的表达及预后
Fig.1 Expression of HNRNP family members in colorectal cancer and their association with the patients' prognosis. A: Expression of HNRNP family members in colorectal cancer. B-L: Prognostic profile of HNRNP family members in colorectal cancer.
图2 HNRNP A1在细胞模型及人体细胞中的定位
Fig.2 Localization of HNRNPA1 in the cell model and human cells. A: Expression of HNRNP A1 in the cell model. B: Expression of HNRNPA1 in human cells detected using immunofluorescence assay.
图3 HNRNP A1在各种组织和免疫细胞中的表达
Fig.3 Expression of HNRNP A1 in different tissues and immune cells. A: Expression of HNRNP A1 in different tissues. B: Expression of HNRNP A1 in immune cells. C: Expression of HNRNP A1 in the core cells.
图4 HNRNP A1在结直肠癌和癌旁组织中的表达情况
Fig. 4 Expression of HNRNP A1 in colorectal cancer and adjacent tissues. A: Expression of HNRNP A1 in different tumors in TIMER 2.0 database. B: Expression of HNRNP A1 in colorectal cancer in GEPIA database. C: Immunohistochemical analysis of SPHK1 expression in colorectal cancer tissue and adjacent tissue.
图5 HNRNP A1与MKI67/VEGFA相关性与患者预后的关系
Fig.5 Correlation of HNRNP A1 with MKI67 and VEGFA expressions and prognosis of colorectal cancer patients. A: Correlation between HNRNP A1 and MKI67 expression. B: Correlation between HNRNP A1 and VEGFA expression. C: Expression of MKI67 in CRC tissue. D: Expression of VEGFA in colorectal cancer tissue. E: Expression of HNRNPA1 in COAD based on individual cancer stages. F: Expression of HNRNPA1 in READ based on individual cancer stages. G: Overall survival of colorectal cancer patients. H: Post progression survival in colorectal cancer patients.
图6 结直肠癌中HNRNP A1与免疫浸润水平的相关性
Fig.6 Correlation between HNRNP A1 and immune infiltration level in colorectal cancer. A: Expression of HNRNP A1 correlates with immune cell infiltration in colon cancer microenvironment. B: Expression of HNRNP A1 correlates with immune cell infiltration in rectal cancer microenvironment.
图7 HNRNP A1的通路富集结果
Fig.7 Enrichment analysis of HNRNP A1 pathways. A: GOterm analysis of BP. B: GOterm analysis of CC. C: GOterm analysis of MF. D: KEGGterm analysis result.
图8 HNRNP A1对CRC细胞的增殖、迁移的影响
Fig.8 HNRNP A1 promotes proliferation and migration of colorectal cancer cells. A, B, G, H: Relative expression level of HNRNPA1 in RKO cells. C, I: CCK-8 assay for assessing cell proliferation. D, J: Clone formation assay. E, K: Wound-healing assay for assessing cell migration (Scale bar: 200 μm). F, L: Transwell assay for assessing cell migration (Scale bar: 50 μm). M, N: Effect of VPC-80051 at different concentrations on cell proliferation. O: Viability of the cells treated with 10 μmol/L VPC-80051 at different time points. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001
Parameters | Clinical case characteristics | |
---|---|---|
Case | Rate (%) | |
Gender | ||
Male | 29 | 59.2 |
Female | 20 | 40.8 |
Age (year) | ||
≥60 | 32 | 65.3 |
<60 | 17 | 34.7 |
Pathologic stage | ||
Tis | 2 | 4.08 |
Ⅰ+Ⅱ | 25 | 51.02 |
Ⅲ+Ⅳ | 22 | 44.9 |
T stage | ||
T1+T2 | 14 | 29.79 |
T3+T4 | 33 | 70.21 |
N stage | ||
N0 | 25 | 53.19 |
N1+N2 | 22 | 46.81 |
表 2 HNRNP A1表达与临床病例特点的关系
Tab.2 Relationship between HNRNP A1 expression and clinical characteristics of the patients
Parameters | Clinical case characteristics | |
---|---|---|
Case | Rate (%) | |
Gender | ||
Male | 29 | 59.2 |
Female | 20 | 40.8 |
Age (year) | ||
≥60 | 32 | 65.3 |
<60 | 17 | 34.7 |
Pathologic stage | ||
Tis | 2 | 4.08 |
Ⅰ+Ⅱ | 25 | 51.02 |
Ⅲ+Ⅳ | 22 | 44.9 |
T stage | ||
T1+T2 | 14 | 29.79 |
T3+T4 | 33 | 70.21 |
N stage | ||
N0 | 25 | 53.19 |
N1+N2 | 22 | 46.81 |
1 | Xi Y, Xu PF. Global colorectal cancer burden in 2020 and projections to 2040[J]. Transl Oncol, 2021, 14(10): 101174. |
2 | Ahmad R, Singh JK, Wunnava A, et al. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review)[J]. Int J Mol Med, 2021, 47(3): 14. |
3 | Klimeck L, Heisser T, Hoffmeister M, et al. Colorectal cancer: a health and economic problem[J]. Best Pract Res Clin Gastroenterol, 2023, 66: 101839. |
4 | Li QY, Zhao HX, Dong WW, et al. RAB27A promotes the proliferation and invasion of colorectal cancer cells[J]. Sci Rep, 2022, 12(1): 19359. |
5 | Siculella L, Giannotti L, Di Chiara Stanca B, et al. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA[J]. Cancer Gene Ther, 2023, 30(3): 394-403. |
6 | 杨宏广, 童春梅, 邓惠敏. hnRNP A1的功能研究进展[J]. 生物化学与生物物理进展, 2021, 48(10): 1146-56. |
7 | Liu X, Ishizuka T, Bao HL, et al. Structure-dependent binding of hnRNPA1 to telomere RNA[J]. J Am Chem Soc, 2017, 139(22): 7533-9. |
8 | Li YX, Yang Y, Ma Q, et al. HNRNPK/CLCN3 axis facilitates the progression of LUAD through CAF-tumor interaction[J]. Int J Biol Sci, 2022, 18(16): 6084-101. |
9 | Li MY, Yang XJ, Zhang GX, et al. Heterogeneous nuclear ribonucleoprotein K promotes the progression of lung cancer by inhibiting the p53-dependent signaling pathway[J]. Thorac Cancer, 2022, 13(9): 1311-21. |
10 | Jiang RQ, Su GF, Chen X, et al. Esculetin inhibits endometrial cancer proliferation and promotes apoptosis via hnRNPA1 to down-regulate BCLXL and XIAP[J]. Cancer Lett, 2021, 521: 308-21. |
11 | Xu HR, Li P, Wang XY, et al. Emerging roles of hnRNP A2B1 in cancer and inflammation[J]. Int J Biol Macromol, 2022, 221: 1077-92. |
12 | Möller K, Wecker AL, Höflmayer D, et al. Upregulation of the heterogeneous nuclear ribonucleoprotein hnRNPA1 is an independent predictor of early biochemical recurrence in TMPRSS2: ERG fusion-negative prostate cancers[J]. Virchows Arch, 2020, 477(5): 625-36. |
13 | Ma YL, Peng JY, Zhang P, et al. Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology[J]. J Proteome Res, 2009, 8(10): 4525-35. |
14 | Ghosh M, Singh M. RGG-box in hnRNPA1 specifically recognizes the telomere G-quadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain[J]. Nucleic Acids Res, 2018, 46(19): 10246-61. |
15 | Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-85. |
16 | Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease[J]. Wiley Interdiscip Rev RNA, 2021, 12(2): e1612. |
17 | Xie W, Zhu HC, Zhao M, et al. Crucial roles of different RNA-binding hnRNP proteins in Stem Cells[J]. Int J Biol Sci, 2021, 17(3): 807-17. |
18 | Dutta K, Kravtsov V, Oleynikova K, et al. Analyzing the effects of single nucleotide polymorphisms on hnRNPA2/B1 protein stability and function: insights for anticancer therapeutic design[J]. ACS Omega, 2024, 9(5): 5485-95. |
19 | Low YH, Asi Y, Foti SC, et al. Heterogeneous nuclear ribonucleoproteins: implications in neurological diseases[J]. Mol Neurobiol, 2021, 58(2): 631-46. |
20 | Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS[J]. Nature, 2013, 495(7442): 467-73. |
21 | Xia AL, Yuan WW, Wang Q, et al. The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription[J]. Nat Cancer, 2022, 3(2): 203-18. |
22 | Gao R, Yu Y, Inoue A, et al. Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis[J]. J Biol Chem, 2013, 288(21): 15046-56. |
23 | Zhu HE, Li T, Shi SN, et al. ESCO2 promotes lung adenocarcinoma progression by regulating hnRNPA1 acetylation[J]. J Exp Clin Cancer Res, 2021, 40(1): 64. |
24 | Zhou JM, Jiang H, Yuan T, et al. High hnRNP AB expression is associated with poor prognosis in patients with colorectal cancer[J]. Oncol Lett, 2019, 18(6): 6459-68. |
25 | Li H, Liu JW, Shen SX, et al. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential[J]. J Cell Mol Med, 2020, 24(19): 11111-9. |
26 | Shi X, Ran L, Liu Y, et al. Knockdown of hnRNP A2/B1 inhibits cell proliferation, invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway[J]. Oncol Rep, 2018, 39(3): 939-50. |
27 | Zhang PS, Ji DH, Hu XH, et al. Oncogenic heterogeneous nuclear ribonucleoprotein D-like promotes the growth of human colon cancer SW620 cells via its regulation of cell-cycle[J]. Acta Biochim Biophys Sin, 2018, 50(9): 880-7. |
28 | Yao P, Wu JB, Lindner D, et al. Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis[J]. Nucleic Acids Res, 2017, 45(13): 7950-64. |
29 | Bilotta MT, Antignani A, Fitzgerald DJ. Managing the TME to improve the efficacy of cancer therapy[J]. Front Immunol, 2022, 13: 954992. |
30 | Khan S, Kwak YT, Peng L, et al. NLRP12 downregulates the Wnt/β-catenin pathway via interaction with STK38 to suppress colorectal cancer[J]. J Clin Invest, 2023, 133(19): e166295. |
31 | Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer[J]. Nat Rev Cancer, 2023, 23(3): 135-55. |
32 | Wan LD, Yu WY, Shen EH, et al. SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer[J]. Gut, 2019, 68(1): 118-29. |
33 | Wen ZL, Lian LY, Ding H, et al. LncRNA ANCR promotes hepatocellular carcinoma metastasis through upregulating HNRNPA1 expression[J]. RNA Biol, 2020, 17(3): 381-94. |
34 | Carabet LA, Leblanc E, Lallous N, et al. Computer-aided discovery of small molecules targeting the RNA splicing activity of hnRNP A1 in castration-resistant prostate cancer[J]. Molecules, 2019, 24(4): 763. |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 庞金龙, 赵新丽, 张振, 王豪杰, 周星琦, 杨玉梅, 李姗姗, 常小强, 李锋, 李娴. 皮肤黑色素瘤中MMRN2高表达促进肿瘤细胞的侵袭和迁移并与不良预后相关[J]. 南方医科大学学报, 2025, 45(7): 1479-1489. |
[3] | 吴璇, 方家敏, 韩玮玮, 陈琳, 孙菁, 金齐力. 高表达PRELID1促进胃癌细胞上皮间质转化并与不良预后相关[J]. 南方医科大学学报, 2025, 45(7): 1535-1542. |
[4] | 王康, 李海宾, 余靖, 孟源, 张虹丽. ELFN1高表达是结肠癌的预后生物标志物并促进结肠癌细胞的增殖转移[J]. 南方医科大学学报, 2025, 45(7): 1543-1553. |
[5] | 翁诺舟, 谭彬, 曾文涛, 古家宇, 翁炼基, 郑克鸿. 过表达RGL1通过激活CDC42/RAC1复合体上调运动型黏着斑组装促进结直肠癌转移[J]. 南方医科大学学报, 2025, 45(5): 1031-1038. |
[6] | 马振南, 刘福全, 赵雪峰, 张晓微. DTX2促进奥沙利铂耐药的结直肠癌细胞增殖、侵袭和上皮间质转化[J]. 南方医科大学学报, 2025, 45(4): 829-836. |
[7] | 张毅, 沈昱, 万志强, 陶嵩, 柳亚魁, 王栓虎. CDKN3高表达促进胃癌细胞的迁移和侵袭:基于调控p53/NF-κB信号通路和抑制胃癌细胞凋亡[J]. 南方医科大学学报, 2025, 45(4): 853-861. |
[8] | 高志, 吴傲, 胡仲翔, 孙培养. 类风湿性关节炎中氧化应激与免疫浸润的生物信息学分析[J]. 南方医科大学学报, 2025, 45(4): 862-870. |
[9] | 庆顺杰, 沈智勇. 过表达己糖激酶2通过激活JAK/STAT途径促进结直肠癌细胞的增殖、迁移和侵袭并调节肿瘤免疫微环境[J]. 南方医科大学学报, 2025, 45(3): 542-553. |
[10] | 黄晴晴, 张文静, 张小凤, 王炼, 宋雪, 耿志军, 左芦根, 王月月, 李静, 胡建国. 高表达MYO1B促进胃癌细胞增殖、迁移和侵袭并与患者的不良预后有关[J]. 南方医科大学学报, 2025, 45(3): 622-631. |
[11] | 李华莉, 宋婷, 刘嘉雯, 李永宝, 姜兆静, 窦文, 周凌宏. 预后导向的肺癌调强放疗计划优化新方法[J]. 南方医科大学学报, 2025, 45(3): 643-649. |
[12] | 宋雪, 陈悦, 张敏, 张诺, 左芦根, 李静, 耿志军, 张小凤, 王月月, 王炼, 胡建国. GPSM2在胃癌组织中高表达并通过促进肿瘤细胞的增殖影响患者预后[J]. 南方医科大学学报, 2025, 45(2): 229-238. |
[13] | 唐天威, 李路安, 陈源汉, 张丽, 徐丽霞, 李志莲, 冯仲林, 张辉林, 华瑞芳, 叶智明, 梁馨苓, 李锐钊. 高血清胱抑素C水平是IgA肾病不良预后的独立危险因素[J]. 南方医科大学学报, 2025, 45(2): 379-386. |
[14] | 许怀文, 翁丽, 薛鸿. CXCL12可作为2型糖尿病合并慢性阻塞性肺疾病的潜在治疗靶点[J]. 南方医科大学学报, 2025, 45(1): 100-109. |
[15] | 陈晓睿, 魏青政, 张宗亮, 原江水, 宋卫青. 过表达带电多泡体蛋白2B基因抑制肾透明细胞癌细胞的增殖[J]. 南方医科大学学报, 2025, 45(1): 126-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||