1 |
Campbell B C V, Desilva D A, Macleod M R, et al. Ischaemic stroke[J].Nat Rev Dis Primers, 2019, 5(1):70.
|
2 |
Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives[J]. Lancet Neurol, 2023, 22(5): 418-29.
|
3 |
He JF, Liu DY, Zhao LX, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (review)[J]. Exp Ther Med, 2022, 23(6): 430.
|
4 |
Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent[J]. J Clin Invest, 1973, 52(3): 741-4.
|
5 |
Hubert M, Stuart S, Ohh M. Glucose deprivation impairs hypoxia-inducible factor-1α synthesis[J]. Discov Oncol, 2024, 15(1): 595.
|
6 |
Wang H, Song TY, Reyes-García J, et al. Hypoxia-induced mitochondrial ROS and function in pulmonary arterial endothelial cells[J]. Cells, 2024, 13(21): 1807.
|
7 |
Fleming AM, Burrows CJ. Why the ROS matters: One-electron oxidants focus DNA damage and repair on G-quadruplexes for gene regulation[J]. DNA Repair, 2025, 145: 103789.
|
8 |
Ernster L, Schatz G. Mitochondria: a historical review[J]. J Cell Biol, 1981, 91(3 Pt 2): 227s-55s.
|
9 |
李 益, 刘柯妤, 徐艳艳, 等. 转录因子FOXO3在心肌缺血再灌注损伤中的研究进展[J]. 中国分子心脏病学杂志, 2024, 24(3): 6173-8.
|
10 |
Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues[J]. Biochim Biophys Acta, 2013, 1827(3): 401-10.
|
11 |
李 曙, 张根葆, 洪 云, 等. 蝮蛇毒蛋白C激活物改善急性心肌梗死大鼠心功能的机制研究[J]. 中国临床药理学与治疗学, 2012, 17(2): 141-6.
|
12 |
李 曙, 陆晓华, 张根葆. 蝮蛇毒蛋白C激活物对大鼠在体心肌缺血再灌注损伤的干预作用[J]. 皖南医学院学报, 2008, 27(3): 167-9.
|
13 |
张 阳, 陈 瑞, 刘 迪, 等. 蝮蛇毒蛋白C激活物对全脑缺血再灌注损伤大鼠血-脑屏障通透性的影响[J]. 中国临床药理学杂志, 2020, 36(16): 2404-7. DOI: 10.13699/j.cnki.1001-6821.2020.16.007
|
14 |
张 阳, 张根葆, 吴 娟. 蝮蛇毒蛋白C激活物对全脑缺血再灌注损伤大鼠血液粘度变化的影响[J]. 皖南医学院学报, 2009, 28(6): 399-401.
|
15 |
Zhu MX, Li XF, Guo J, et al. Orexin A protects against cerebral ischemia-reperfusion injury by enhancing reperfusion in ischemic cortex via HIF-1α-ET-1/ENOS pathway[J]. Brain Res Bull, 2024, 218: 111105.
|
16 |
Li ZH, Yin B, Xu YN, et al. Von Hippel-Lindau deficiency protects the liver against ischemia/reperfusion injury through the regulation of hypoxia-inducible factor 1α and 2α[J]. Hepatol Commun, 2024, 8(12): e0567.
|
17 |
Gao WH, Wang DY, Shi YM, et al. Potential cardiovascular disease treatment by natural drugs targeting the HIF-1α factor and its pathway[J]. Comb Chem High Throughput Screen, 2024.
|
18 |
Shen GL, Wang H, Zhu N, et al. HIF-1/2α‑activated RNF146 enhances the proliferation and glycolysis of hepatocellular carcinoma cells via the PTEN/AKT/mTOR pathway[J]. Front Cell Dev Biol, 2022, 10: 893888.
|
19 |
Wurm CA, Jakobs S. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast[J]. FEBS Lett, 2006, 580(24): 5628-34.
|
20 |
Toulmay A, Prinz WA. Lipid transfer and signaling at organelle contact sites: the tip of the iceberg[J]. Curr Opin Cell Biol, 2011, 23(4): 458-63.
|
21 |
Li S, Mo JC, Fang YX, et al. Macrophage migration inhibitory factor facilitates replication of Senecavirus A by enhancing the glycolysis via hypoxia inducible factor 1 alpha[J]. Int J Biol Macromol, 2024, 281(Pt 1): 136197.
|
22 |
Huang YY, Yang Y, Chen XL, et al. Downregulation of malic enzyme 3 facilitates progression of gastric carcinoma via regulating intracellular oxidative stress and hypoxia-inducible factor-1α stabilization[J]. Cell Mol Life Sci, 2024, 81(1): 375.
|
23 |
Lu B, Li JH, Gui MT, et al. Salvianolic acid B inhibits myocardial I/R-induced ROS generation and cell apoptosis by regulating the TRIM8/GPX1 pathway[J]. Pharm Biol, 2022, 60(1): 1458-68.
|
24 |
Ding CG, Ding XM, Zheng J, et al. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury[J]. Cell Death Dis, 2020, 11(10): 929.
|
25 |
李 曙, 张根葆, 洪 云, 等. 蛇毒PCA改善冠脉微血栓大鼠血液流变学的机制研究[J]. 中国病理生理杂志, 2012, 28(4): 595-600. DOI: 10.3969/j.issn.1000-4718.2012.04.004
|
26 |
Zhang L, Cao YY, Guo XX, et al. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma[J]. J Zhejiang Univ Sci B, 2023, 24(1): 32-49.
|
27 |
徐 丹, 陶 陶, 张继荣, 等. HIF-1α对脑缺血再灌注损伤细胞凋亡及凋亡相关基因的研究进展[J]. 中国神经免疫学和神经病学杂志, 2017, 24(3): 219-22. DOI: 10.3969/j.issn.1006-2963.2017.03.016
|
28 |
Kobayashi Y, Oguro A, Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS)[J]. Free Radic Res, 2021, 55(2): 154-64.
|
29 |
Zhang C, Zhen LM, Fang ZP, et al. Adiponectin treatment attenuates cerebral ischemia-reperfusion injury through HIF-1 α-mediated antioxidation in mice[J]. Oxid Med Cell Longev, 2021, 2021: 5531048.
|
30 |
Yang N, Yang X, Fang Y, et al. Nitric oxide promotes cerebral ischemia/reperfusion injury through upregulating hypoxia-inducible factor1‑α‑associated inflammation and apoptosis in rats[J]. Neurosci Lett, 2023, 795: 137034.
|
31 |
Wang CC, Li Y, Qian XQ, et al. Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway[J]. J Drug Target, 2022, 30(8): 858-72.
|
32 |
Shao Z, Dou S, Zhu J, et al. The Role of Mitophagy in Ischemic Stroke[J]. Front Neurol, 2020, 11:608610.
|
33 |
Li SH, Jiang JM, Fang JY, et al. Naringin protects H9C2 cardiomyocytes from chemical hypoxia-induced injury by promoting the autophagic flux via the activation of the HIF-1α/BNIP3 signaling pathway[J]. Int J Mol Med, 2021, 47(6): 102.
|