1 |
Charčiūnaitė K, Gauronskaitė R, Šlekytė G, et al. Evaluation of obstructive sleep apnea phenotypes treatment effectiveness[J]. Medicina, 2021, 57(4): 335.
|
2 |
Laratta CR, Ayas NT, Povitz M, et al. Diagnosis and treatment of obstructive sleep apnea in adults[J]. CMAJ, 2017, 189(48): E1481- 8.
|
3 |
Domínguez-Mayoral A, Sánchez-Gómez J, Guerrero P, et al. High prevalence of obstructive sleep apnea syndrome in Spain's Stroke Belt[J]. J Int Med Res, 2021, 49(10): 3000605211053090.
|
4 |
Wang Y, Yang QC, Feng J, et al. The prevalence and clinical features of hypertension in patients with obstructive sleep apnea hypopnea syndrome and related nursing strategies[J]. J Nurs Res, 2016, 24(1): 41-7.
|
5 |
Qian YJ, Yi HL, Zou JY, et al. Independent association between sleep fragmentation and dyslipidemia in patients with obstructive sleep apnea[J]. Sci Rep, 2016, 6: 26089.
|
6 |
Woo HG, Song TJ, Jung JS, et al. Association between the high risk for obstructive sleep apnea and intracranial carotid artery calcification in patients with acute ischemic stroke[J]. Schlaf Atmung, 2021, 25(1): 299-307.
|
7 |
Gabryelska A, Chrzanowski J, Sochal M, et al. Nocturnal oxygen saturation parameters as independent risk factors for type 2 diabetes mellitus among obstructive sleep apnea patients[J]. J Clin Med, 2021, 10(17): 3770.
|
8 |
Lu XX, Wang X, Xu T, et al. Circulating C3 and glucose metabolism abnormalities in patients with OSAHS[J]. Schlaf Atmung, 2018, 22(2): 345-51.
|
9 |
Lv RJ, Liu XY, Zhang Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218.
|
10 |
Murphy AM, Thomas A, Crinion SJ, et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation[J]. Eur Respir J, 2017, 49(4): 1601731.
|
11 |
Li XM, Zhang X, Hou XZ, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension[J]. Apoptosis, 2023, 28(3/4): 432-46.
|
12 |
Schulte R, Wohlleber D, Unrau L, et al. Pioglitazone-mediated peroxisome proliferator-activated receptor γ activation aggravates murine immune-mediated hepatitis[J]. Int J Mol Sci, 2020, 21(7): 2523.
|
13 |
Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications[J]. Expert Opin Ther Targets, 2018, 22(2): 153-60.
|
14 |
Massart J, Sjögren RJO, Lundell LS, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle[J]. Diabetes, 2017, 66(7): 1807-18.
|
15 |
Zhou T, Meng XH, Che H, et al. Regulation of insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway[J]. Cell Physiol Biochem, 2016, 38(5): 2063-78.
|
16 |
Liu KX, Chen GP, Lin PL, et al. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model[J]. Life Sci, 2018, 193: 194-9.
|
17 |
Gao HB, Han ZL, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus[J]. Behav Brain Res, 2017, 335: 80-7.
|
18 |
Wu X, Chang SC, Jin JF, et al. NLRP3 inflammasome mediates chronic intermittent hypoxia-induced renal injury implication of the microRNA-155/FOXO3a signaling pathway[J]. J Cell Physiol, 2018, 233(12): 9404-15.
|
19 |
Li K, Wei P, Qin YW, et al. MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea patients[J]. Medicine, 2017, 96(34): e7917.
|
20 |
王 云, 何 燕, 刘师节, 等. 阻塞性睡眠呼吸暂停低通气综合征与糖脂代谢紊乱的机制研究进展[J]. 中国全科医学, 2022, 25(2): 243-7.
|
21 |
Wang C, Tan J, Miao YY, et al. Obstructive sleep apnea, prediabetes and progression of type 2 diabetes: a systematic review and meta-analysis[J]. J Diabetes Investig, 2022, 13(8): 1396-411.
|
22 |
Zeng S, Wang YY, Ai L, et al. Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas[J]. Clin Exp Pharmacol Physiol, 2024, 51(3): e13843.
|
23 |
郑莉芳, 陈佩杰, 肖卫华. MicroRNAs对骨骼肌胰岛素抵抗的调控及其机制[J]. 生理学报, 2019, 71(3): 497-504.
|
24 |
Wei J, Hao QY, Chen CK, et al. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle[J]. Theranostics, 2020, 10(20): 9230-48.
|
25 |
Kong QR, Ji DM, Li FR, et al. MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3967-75.
|
26 |
Liang JT, Tang JM, Shi HJ, et al. MiR-27a-3p targeting RXRα promotes colorectal cancer progression by activating Wnt/β-catenin pathway[J]. Oncotarget, 2017, 8(47): 82991-3008.
|
27 |
Han LL, Wang SH, Yao MY, et al. Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease[J]. World J Diabetes, 2024, 15(1): 92-104.
|
28 |
Ghoreishi E, Shahrokhi SZ, Kazerouni F, et al. Circulating miR-148b-3p and miR-27a-3p can be potential biomarkers for diagnosis of pre-diabetes and type 2 diabetes: integrating experimental and in-silico approaches[J]. BMC Endocr Disord, 2022, 22(1): 207.
|
29 |
Chemello F, Grespi F, Zulian A, et al. Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle[J]. Cell Rep, 2019, 26(13): 3784-97. e8.
|
30 |
LaPierre MP, Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes[J]. Mol Metab, 2017, 6(9): 1010-23.
|
31 |
Shahrokhi SZ, Saeidi L, Sadatamini M, et al. Can miR-145-5p be used as a marker in diabetic patients[J]? Arch Physiol Biochem, 2022, 128(5): 1175-80.
|
32 |
Saeidi L, Shahrokhi SZ, Sadatamini M, et al. Can circulating miR-7-1-5p, and miR-33a-5p be used as markers of T2D patients[J]? Arch Physiol Biochem, 2023, 129(3): 771-7.
|
33 |
汤金梅, 吕 荣, 毕亭亭, 等. PCB118诱发大鼠胰岛素抵抗及对骨骼肌细胞功能的影响[J]. 中国老年学杂志, 2021, 41(13): 2808-11.
|
34 |
谭 健, 莫海兰, 李 洁, 等.慢性间歇性缺氧对大鼠骨骼肌葡萄糖转运蛋白4表达的影响 [J]. 南方医科大学学报,2014, 34 (07):1061-4.
|
35 |
张 婷. 不同骨骼肌来源的外泌体携带miR-27a-3p调节肌间FAPs成脂分化的研究[D]. 重庆: 重庆医科大学, 2022.
|
36 |
郑志然. bta-miR-27a-3p靶向INSR在围产期奶牛脂肪肝发病中的作用研究[D]. 泰安: 山东农业大学, 2022.
|
37 |
王一成, 刘承雨, 黄汉鹏. 线粒体动力学在OSAHS合并肥胖所致腓肠肌损伤中的作用及其机制研究[J]. 医学研究杂志, 2023, 52(12): 120-7.
|
38 |
栗瑞雪. 间歇低氧大鼠骨骼肌细胞PTP1B及PI3K表达在胰岛素抵抗中的作用[D]. 太原: 山西医科大学, 2016.
|