1 |
Wu T, Li J, Shao L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67(12): 2181-91.
|
2 |
Li JQ, Liang X, You SL, et al. Development and validation of a new prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. J Hepatol, 2021, 75(5): 1104-15.
|
3 |
Zhang J, Gao S, Duan ZP, et al. Overview on acute-on-chronic liver failure[J]. Front Med, 2016, 10(1): 1-17.
|
4 |
Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis[J]. Curr Opin Crit Care, 2011, 17(2): 165-9.
|
5 |
Sarin SK, Choudhury A, Sharma MK, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update[J]. Hepatol Int, 2019, 13(4): 353-90.
|
6 |
Arroyo V, Moreau R, Jalan R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-45.
|
7 |
Zhang IW, Curto A, López-Vicario C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76(1): 93-106.
|
8 |
Zaccherini G, Aguilar F, Caraceni P, et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF[J]. J Hepatol, 2021, 74(5): 1117-31.
|
9 |
Li J, Liang X, Jiang J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF[J]. Gut, 2022, 71(1): 163-75.
|
10 |
Peng B, Li H, Liu K, et al. Intrahepatic macrophage reprogramming associated with lipid metabolism in hepatitis B virus-related acute-on-chronic liver failure[J]. J Transl Med, 2023, 21(1): 419.
|
11 |
Moreau R, Clària J, Aguilar F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF[J]. J Hepatol, 2020, 72(4): 688-701.
|
12 |
McPhail MJW, Coen M. Metabolomics to discriminate between acute decompensation and acute-on-chronic liver failure in cirrhosis[J]. J Hepatol, 2020, 73(3): 730-2.
|
13 |
Clària J, Moreau R, Fenaille F, et al. Orchestration of tryptophan-kynurenine pathway, acute decompensation, and acute-on-chronic liver failure in cirrhosis[J]. Hepatology, 2019, 69(4): 1686-701.
|
14 |
Klaessens S, Stroobant V, Hoffmann D, et al. Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2, 3-dioxygenase[J]. Proc Natl Acad Sci USA, 2021, 118(23): e2022447118.
|
15 |
Klaessens S, Stroobant V, De Plaen E, et al. Systemic tryptophan homeostasis[J]. Front Mol Biosci, 2022, 9: 897929.
|
16 |
Hikosaka K, Yaku K, Okabe K, et al. Implications of NAD metabolism in pathophysiology and therapeutics for neuro-degenerative diseases[J]. Nutr Neurosci, 2021, 24(5): 371-83.
|
17 |
Navas LE, Carnero A. Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer[J]. Cells, 2022, 11(17): 2627.
|
18 |
Cao P, Chen Q, Shi CX, et al. Fusobacterium nucleatum promotes the development of acute liver failure by inhibiting the NAD+ salvage metabolic pathway[J]. Gut Pathog, 2022, 14(1): 29.
|
19 |
Moreau R. The pathogenesis of ACLF: the inflammatory response and immune function[J]. Semin Liver Dis, 2016, 36(2): 133-40.
|
20 |
Sarin SK, Choudhury A. Acute-on-chronic liver failure: term-inology, mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(3): 131-49.
|
21 |
Savitz J. The kynurenine pathway: a finger in every pie[J]. Mol Psychiatry, 2020, 25(1): 131-47.
|
22 |
Majewski M, Kozlowska A, Thoene M, et al. Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease[J]. J Physiol Pharmacol, 2016, 67(1): 3-19.
|
23 |
Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ, 2002, 9(10): 1069-77.
|
24 |
Lerch S, Schefold JC, Spinetti T. The role of kynurenines produced by indolamine-2, 3-dioxygenase 1 in sepsis[J]. Pharmacology, 2022, 107(7/8): 359-67.
|
25 |
Platten M, Wick W, van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion[J]. Cancer Res, 2012, 72(21): 5435-40.
|
26 |
Nikolaus S, Schulte B, Al-Massad N, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases[J]. Gastroenterology, 2017, 153(6): 1504-16. e2.
|
27 |
Prendergast GC, Smith C, Thomas S, et al. Indoleamine 2, 3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer[J]. Cancer Immunol Immunother, 2014, 63(7): 721-35.
|