Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 187-196.doi: 10.12122/j.issn.1673-4254.2025.01.22
Xiupeng LONG1(), Shun TAO1, Shen YANG1, Suyun LI1, Libing RAO1, Li LI1, Zhe ZHANG2
Received:
2024-05-15
Online:
2025-01-20
Published:
2025-01-20
Contact:
Li LI, Zhe ZHANG
E-mail:daexiansheng@foxmail.com
Xiupeng LONG, Shun TAO, Shen YANG, Suyun LI, Libing RAO, Li LI, Zhe ZHANG. Quercetin improves heart failure by inhibiting cardiomyocyte apoptosis via suppressing the MAPK signaling pathway[J]. Journal of Southern Medical University, 2025, 45(1): 187-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.22
Genes | Primer sequence |
---|---|
Bcl-2 | F: 5'-ATCTCCCTGTTGACGCTCT-3′ |
R: 5'-CATCTTCTCCTTCCAGCCT-3′ | |
Bax | F: 5'-AGCCACAAAGATGGTCACT-3′ |
R: 5'-GGAGATGAACTGGATAGCAA-3′ | |
Caspase-3 | F: 5'-TGTTTCCCTGAGGTTTGCTG-3′ |
R: 5'-TGCTATTGTGAGGCGGTTGT-3′ | |
ERK | F: 5'-CGGAACTTGCAATCCTCAGT-3′ |
R: 5'-TCGTGTGGGTCCTGAATTGG-3′ | |
p38 | F: 5'-CTGCGAGGGCTGAAGTAT-3′ |
R: 5'-TCCTCTTATCCGAGTCCAA-3′ | |
GAPDH | F: 5'-GAAGGTGAAGGTCGGAGTC-3' |
R: 5'-GAAGATGGTGATGGGATTTC-3' |
Tab.1 Primer sequence for qRT-PCR
Genes | Primer sequence |
---|---|
Bcl-2 | F: 5'-ATCTCCCTGTTGACGCTCT-3′ |
R: 5'-CATCTTCTCCTTCCAGCCT-3′ | |
Bax | F: 5'-AGCCACAAAGATGGTCACT-3′ |
R: 5'-GGAGATGAACTGGATAGCAA-3′ | |
Caspase-3 | F: 5'-TGTTTCCCTGAGGTTTGCTG-3′ |
R: 5'-TGCTATTGTGAGGCGGTTGT-3′ | |
ERK | F: 5'-CGGAACTTGCAATCCTCAGT-3′ |
R: 5'-TCGTGTGGGTCCTGAATTGG-3′ | |
p38 | F: 5'-CTGCGAGGGCTGAAGTAT-3′ |
R: 5'-TCCTCTTATCCGAGTCCAA-3′ | |
GAPDH | F: 5'-GAAGGTGAAGGTCGGAGTC-3' |
R: 5'-GAAGATGGTGATGGGATTTC-3' |
Fig.6 Effects of different concentrations of quercetin(Que) on isoproterenol (ISO)-induced injury in mouse cardiomyocytes. A: Effects of different concentrations of quercetin on the survival rate of myocardial cells induced by ISO. B: Hoechst staining for detecting apoptosis of the injured cardiomyocytes (Original magnification:×200). ##P<0.01 vs Control group, *P<0.05, **P<0.01 vs ISO group (n=3).
Fig.8 Effects of different concentrations of quercetin on mRNA expressions of Bcl-2 (A), Bax (B), Bax/Bcl-2 ratio (C) and caspase-3 (D) in the cardiomyocytes in each group. ##P<0.01 vs Control group, *P<0.05, **P<0.01 vs ISO group (n=3).
Fig.9 Effects of different concentrations of quercetin on the expression of apoptosis-related proteins in the cardiomyocytes in each group. A: Western blotting of c-caspase-3, t-caspase-3, Bcl-2 and Bax proteins. B: Ratio of cleaved-caspase-3/caspase-3 protein. C: Ratio of Bax/Bcl-2 protein. ##P<0.01 vs Control group, **P<0.01 vs ISO group (n=3).
Fig.10 Effects of different concentrations of quercetin on ERK/p38 expression in the cardiomyocytes in each group. A, B: Effects of quercetin on expressions of ERK and p38 mRNA in the cells. C: Western blotting of p-ERK, ERK, p-p38 and p38 proteins. D, E: Expression of p-ERK/ERK and p-p38/p38 protein in the cells. ##P<0.01 vs Control group, *P<0.05, **P<0.01, ***P<0.001 vs ISO group (n=3).
Fig.11 Effects of different concentrations of quercetin on expressions of apoptosis-related proteins in cardiomyocytes treated with ERK/p38 pathway inhibitors. A: Effects of different concentrations of quercetin on the expression of Bax, Bcl-2 and caspase-3 in the cells after adding ERK inhibitor (TBHQ) and p38 inhibitor (SB 203580). B: Ratio of Bax/Bcl-2 protein expression. C: Ratio of cleaved-caspase-3/caspase-3 protein expression. ##P<0.01 vs Control group, **P<0.01 vs ISO group, △△P<0.01 vs ISO+Que group (n=3).
1 | Baman JR, Ahmad FS. Heart failure[J]. JAMA, 2020, 324(10): 1015. |
2 | 射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023[J]. 中国循环杂志, 2023, 38(4): 375-93. |
3 | McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36): 3599-726. |
4 | Mascolo A, di Mauro G, Cappetta D, et al. Current and future therapeutic perspective in chronic heart failure[J]. Pharmacol Res, 2022, 175: 106035. |
5 | Bai BB, Ji ZL, Wang FF, et al. CTRP12 ameliorates post-myocardial infarction heart failure through down-regulation of cardiac apo-ptosis, oxidative stress and inflammation by influencing the TAK1-p38 MAPK/JNK pathway[J]. Inflamm Res, 2023, 72(7): 1375-90. |
6 | Zhang SY, Liu HB, Fang QQ, et al. Shexiang Tongxin dropping pill protects against chronic heart failure in mice via inhibiting the ERK/MAPK and TGF‑β signaling pathways[J]. Front Pharmacol, 2021, 12: 796354. |
7 | Wan CR, Han DD, Xu JQ, et al. Jujuboside A attenuates norepinephrine-induced apoptosis of H9c2 cardiomyocytes by modulating MAPK and AKT signaling pathways[J]. Mol Med Rep, 2018, 17(1): 1132-40. |
8 | Hu QC, Qu CY, Xiao XL, et al. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities[J]. Chin Med, 2021, 16(1): 74. |
9 | Zhang WW, Zheng Y, Yan F, et al. Research progress of quercetin in cardiovascular disease[J]. Front Cardiovasc Med, 2023, 10: 1203713. |
10 | Wang SH, Tsai KL, Chou WC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway[J]. Am J Chin Med, 2022, 50(5): 1281-98. |
11 | 李 霞, 程贝贝, 谭骏岚, 等. 黄芪主成分槲皮素通过MAPK通路调控PASMCs铁死亡抗低氧性肺动脉高压的研究(英文)[J]. 中国药学(英文版), 2024, 33(8): 714-29. |
12 | 谭 鑫, 鲜 维, 陈永锋, 等. 槲皮素治疗心力衰竭的分子机制:基于网络药理学与分子对接方法[J]. 南方医科大学学报, 2021, 41(8): 1198-206. |
13 | Nogales C, Mamdouh ZM, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms[J]. Trends Pharmacol Sci, 2022, 43(2): 136-50. |
14 | Shi TT, Hou CQ, Duan YZ, et al. Mechanism of Smilax China L. in the treatment of intrauterine adhesions based on network pharmacology, molecular docking and experimental validation[J]. BMC Complement Med Ther, 2024, 24(1): 150. |
15 | Li X, Wei SZ, Niu SQ, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis[J]. Comput Biol Med, 2022, 144: 105389. |
16 | Sauer AJ, Cole R, Jensen BC, et al. Practical guidance on the use of sacubitril/valsartan for heart failure[J]. Heart Fail Rev, 2019, 24(2): 167-76. |
17 | Hyman DA, Siebert VR, Birnbaum GD, et al. A modern history RAAS inhibition and beta blockade for heart failure to underscore the non-equivalency of ACEIs and ARBs[J]. Cardiovasc Drugs Ther, 2020, 34(2): 215-21. |
18 | Romero-Becerra R, Santamans AM, Folgueira C, et al. p38 MAPK pathway in the heart: new insights in health and disease[J]. Int J Mol Sci, 2020, 21(19): 7412. |
19 | Zhang M, Li YC, Wang YQ, et al. Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS[J]. Pak J Pharm Sci, 2019, 32(3 Special): 1355-9. |
20 | Tan X, Xian W, Li XR, et al. Mechanisms of Quercetin against atrial fibrillation explored by network pharmacology combined with molecular docking and experimental validation[J]. Sci Rep, 2022, 12(1): 9777. |
21 | Bass-Stringer S, Tai CMK, McMullen JR. IGF1-PI3K-induced physiological cardiac hypertrophy: implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity[J]. J Sport Health Sci, 2021, 10(6): 637-47. |
22 | Gao JY, Feng WJ, Lv W, et al. HIF-1/AKT signaling-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia[J]. Int Heart J, 2021, 62(2): 350-8. |
23 | Al-Rasheed NM, Fadda LM, Attia HA, et al. Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Ba x, HIF1‑α, TGF‑β, Smad-2, and AKT pathways[J]. J Biochem Mol Toxicol, 2017, 31(5). doi: 10.1002/jbt.21883 . |
24 | Fang Z, Yushanjiang F, Wang GJ, et al. Germacrone mitigates cardiac remodeling by regulating PI3K/AKT-mediated oxidative stress, inflammation, and apoptosis[J]. Int Immunopharmacol, 2023, 124(Pt A): 110876. |
25 | Fu C, Yao YYY, Li LB, et al. P4239Bradykinin inhibits High Glucose-Induced Senescence of c-kit Positive Cardiac Stem Cells via B2R/PI3K/AKT/mTOR/P53 signal pathway[J]. Eur Heart J, 2017, 38(): ehx504.P4239. |
26 | Tang XY, Jiang HL, Lin PY, et al. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes[J]. Cell Death Discov, 2021, 7(1): 242. |
27 | Wang L, Wu HW, Xiong L, et al. Quercetin downregulates cyclooxygenase-2 expression and HIF-1α/VEGF signaling-related angiogenesis in a mouse model of abdominal aortic aneurysm[J]. Biomed Res Int, 2020, 2020: 9485398. |
28 | Meijles DN, Cull JJ, Markou T, et al. Redox regulation of cardiac ASK1 (apoptosis signal-regulating kinase 1) controls p38-MAPK (mitogen-activated protein kinase) and orchestrates cardiac remodeling to hypertension[J]. Hypertension, 2020, 76(4): 1208-18. |
29 | Cheng J, Huang Y, Zhang XH, et al. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism[J]. Nat Commun, 2020, 11(1): 1880. |
30 | Moulin S, Thomas A, Wagner S, et al. Intermittent hypoxia-induced cardiomyocyte death is mediated by HIF-1 dependent MAM disruption[J]. Antioxidants, 2022, 11(8): 1462. |
31 | Fleisher TA. Apoptosis[J]. Ann Allergy Asthma Immunol, 1997, 78(3): 245-50. |
32 | Lin XY, Ouyang SY, Zhi CX, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis[J]. Arch Biochem Biophys, 2022, 715: 109098. |
33 | Liu YL, Yang LQ, Yin JM, et al. MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by down-regulating bcl-2 and MAPK3[J]. J Investig Med, 2018, 66(1): 39-45. |
34 | Chen SN, Lombardi R, Karmouch J, et al. DNA damage response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (lamin A/C) mutations[J]. Circ Res, 2019, 124(6): 856-73. |
35 | Chen YF, Qiu Q, Wang L, et al. Quercetin ameliorates myocardial injury in diabetic rats by regulating autophagy and apoptosis through AMPK/mTOR signaling pathway[J]. Am J Chin Med, 2024, 52(3): 841-64. |
36 | de Lacerda Alexandre JV, Viana YIP, David CEB, et al. Quercetin treatment increases H2O2 removal by restoration of endogenous antioxidant activity and blocks isoproterenol-induced cardiac hypertrophy[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 217-26. |
[1] | Qiao CHU, Xiaona WANG, Jiaying XU, Huilin PENG, Yulin ZHAO, Jing ZHANG, Guoyu LU, Kai WANG. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways [J]. Journal of Southern Medical University, 2025, 45(1): 150-161. |
[2] | Yifan JIANG, Xiaorong LI, Jiayi GENG, Yongfeng CHEN, Bi TANG, Pinfang KANG. Quercetin ameliorates diabetic kidney injury in rats by inhibiting the HMGB1/RAGE/ NF-κB signaling pathway [J]. Journal of Southern Medical University, 2024, 44(9): 1769-1775. |
[3] | Xingmei CHEN, Qinwen LIU, Yi LI, Xiaoyu ZHONG, Qiling FAN, Ke MA, Liuting LUO, Daogang GUAN, Zhibo ZHU. Analysis of core functional components in Yinchenhao Decoction and their pathways for treating liver fibrosis [J]. Journal of Southern Medical University, 2024, 44(8): 1508-1517. |
[4] | Shanyuan ZHANG, Qiaoyan CAI, Jianghan QI, Kaixin YIN, Chenchen HE, Zhuye GAO, Ling ZHANG, Jianfeng CHU. Pharmacodynamics of Qingxin Jieyu Granules for treatment of atherosclerosis and its regulatory mechanism for lipid metabolism [J]. Journal of Southern Medical University, 2024, 44(8): 1518-1528. |
[5] | Yuming ZHANG, Shicheng XIA, Linlin ZHANG, Mengxi CHEN, Xiaojing LIU, Qin GAO, Hongwei YE. Protective effect of Lonicerae japonicae flos extract against doxorubicin-induced liver injury in mice [J]. Journal of Southern Medical University, 2024, 44(8): 1571-1581. |
[6] | Jinjin WANG, Wenfei CUI, Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN. Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1243-1255. |
[7] | Linyue WANG, Wenyue QI, Jihua GAO, Maosheng TIAN, Jiancheng XU. Tongyangxiao Lotion promotes postoperative wound healing in a rat model of anal fistula by downregulating inflammatory factors and suppressing inflammation [J]. Journal of Southern Medical University, 2024, 44(7): 1256-1265. |
[8] | Wenxiang ZHANG, Huixian GU, Pengde CHEN, Siyu WU, Hongyan MA, Lan YAO. Compound Yuye Decoction protects diabetic rats against cardiomyopathy by inhibiting myocardial apoptosis and inflammation via regulating the PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1306-1314. |
[9] | Yan HUANG, Lulu QIN, Shaoxing GUAN, Yanping GUANG, Yuru WEI, Ailing CAO, Dongmei LI, Guining WEI, Qibiao SU. Therapeutic mechanism of aqueous extract of Semiliquidambar cathayensis Chang root for pancreatic cancer: the active components, therapeutic targets and pathways [J]. Journal of Southern Medical University, 2024, 44(7): 1336-1344. |
[10] | Zhijun REN, Jianxin DIAO, Yiting WANG. Xionggui Decoction alleviates heart failure in mice with myocardial infarction by inhibiting oxidative stress-induced cardiomyocyte apoptosis [J]. Journal of Southern Medical University, 2024, 44(7): 1416-1424. |
[11] | Caiyu SHEN, Shuai WANG, Ruiying ZHOU, Yuhe WANG, Qin GAO, Xingzhi CHEN, Shu YANG. Prediction of risk of in-hospital death in patients with chronic heart failure complicated by lung infections using interpretable machine learning [J]. Journal of Southern Medical University, 2024, 44(6): 1141-1148. |
[12] | Ruibo LI, Ge GAO, Xi XIE, Haibin LUO. Oral submucosal fibrosis induced by active components in areca nut: a network pharmacology-based analysis and validation of the mechanism [J]. Journal of Southern Medical University, 2024, 44(5): 930-940. |
[13] | Nan WANG, Bin SHI, Xiaolan MAN, Weichao WU, Jia CAO. High expression of fragile X mental retardation protein inhibits ferroptosis of colorectal tumor cells by activating the RAS/MAPK signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 885-893. |
[14] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
[15] | RONG Shengwei, LI Hongfang, WEI Yiran, FENG Zihang, GAN Lu, DENG Zhonghao, ZHAO Liang. Zinc finger protein-36 deficiency inhibits osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells and preosteoblasts by activating the ERK/MAPK pathway [J]. Journal of Southern Medical University, 2024, 44(4): 697-705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||