Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (7): 1243-1255.doi: 10.12122/j.issn.1673-4254.2024.07.04
Previous Articles Next Articles
Jinjin WANG(), Wenfei CUI(
), Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN(
)
Received:
2024-03-14
Online:
2024-07-20
Published:
2024-07-25
Contact:
Guoli YAN
E-mail:wangjinjin@hactcm.edu.cn;2276509538@qq.com;yanguoli@hactcm.edu.cn
Supported by:
Jinjin WANG, Wenfei CUI, Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN. Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway[J]. Journal of Southern Medical University, 2024, 44(7): 1243-1255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.07.04
Mol ID | Molecule Name | Oral bioavailability (%) | Drug-like properties |
---|---|---|---|
MOL001040 | (2R)-5, 7-dihydroxy-2-(4-hydroxyphenyl) chroman-4-one | 42.36 | 0.21 |
MOL001755 | 24-Ethylcholest-4-en-3-one | 36.08 | 0.76 |
MOL000358 | beta-sitosterol | 36.91 | 0.75 |
MOL000359 | sitosterol | 36.91 | 0.75 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL005100 | 5, 7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one | 47.74 | 0.27 |
MOL000098 | quercetin | 46.43 | 0.28 |
MOL001420 | ZINC04073977 | 38 | 0.76 |
Tab.1 Main active ingredients in Euonymus alatus for treatment of DKD
Mol ID | Molecule Name | Oral bioavailability (%) | Drug-like properties |
---|---|---|---|
MOL001040 | (2R)-5, 7-dihydroxy-2-(4-hydroxyphenyl) chroman-4-one | 42.36 | 0.21 |
MOL001755 | 24-Ethylcholest-4-en-3-one | 36.08 | 0.76 |
MOL000358 | beta-sitosterol | 36.91 | 0.75 |
MOL000359 | sitosterol | 36.91 | 0.75 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL005100 | 5, 7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chroman-4-one | 47.74 | 0.27 |
MOL000098 | quercetin | 46.43 | 0.28 |
MOL001420 | ZINC04073977 | 38 | 0.76 |
Up-regulated genes | logFC | P | Down-regulated genes | logFC | P |
---|---|---|---|---|---|
LUM | 2.343814499 | 6.21×10-12 | G6PC | -2.854555923 | 2×10-16 |
MMP7 | 2.22402567 | 3.41×10-9 | ALB | -2.203960464 | 1.2×10-9 |
FN1 | 2.067417931 | 2.88×10-10 | FOS | -2.069379844 | 2.37×10-11 |
C3 | 2.028993328 | 3.53×10-9 | LPL | -1.829387514 | 1.72×10-16 |
IGJ | 1.90309721 | 1.38×10-7 | ZFP36 | -1.683736259 | 1.95×10-13 |
VCAN | 1.830704374 | 9.5×10-8 | ALDOB | -1.537200778 | 4.47×10-5 |
MOXD1 | 1.764184138 | 8.5×10-11 | FOSB | -1.527474388 | 2.82×10-10 |
COL1A2 | 1.716058931 | 5.2×10-12 | EGR1 | -1.526816671 | 1.19×10-6 |
C7 | 1.698285969 | 1.83×10-8 | CYP27B1 | -1.526356948 | 2.94×10-11 |
CCL19 | 1.538100328 | 2.34×10-8 | UMOD | -1.494821792 | 2.77×10-5 |
ADH1B | 1.527694813 | 4.53×10-8 | HPGD | -1.491939257 | 1.49×10-8 |
COL6A3 | 1.45202264 | 7.49×10-11 | HPD | -1.476264604 | 7.57×10-6 |
MARCKS | 1.429551387 | 1.92×10-10 | EGF | -1.471530504 | 2.5×10-11 |
TNC | 1.427538552 | 1.01×10-9 | KNG1 | -1.463898156 | 3.23×10-6 |
MS4A6A | 1.397713434 | 2.25×10-9 | APOH | -1.412843883 | 6.19×10-9 |
LTF | 1.389034747 | 3.58×10-6 | AFM | -1.401540175 | 1.98×10-6 |
IGKC | 1.367567925 | 1.34×10-6 | TPPP3 | -1.366144814 | 8.14×10-14 |
THBS2 | 1.347011952 | 3.75×10-10 | ESM1 | -1.359050399 | 1.23×10-9 |
COL3A1 | 1.343621855 | 5.48×10-8 | DUSP1 | -1.355440112 | 4.6×10-18 |
CCL21 | 1.330208775 | 2.07×10-6 | S100A12 | -1.354199988 | 5.61×10-8 |
Tab.2 Top 20 up-regulated and down-regulated genes in diabetic kidney disease (DKD)
Up-regulated genes | logFC | P | Down-regulated genes | logFC | P |
---|---|---|---|---|---|
LUM | 2.343814499 | 6.21×10-12 | G6PC | -2.854555923 | 2×10-16 |
MMP7 | 2.22402567 | 3.41×10-9 | ALB | -2.203960464 | 1.2×10-9 |
FN1 | 2.067417931 | 2.88×10-10 | FOS | -2.069379844 | 2.37×10-11 |
C3 | 2.028993328 | 3.53×10-9 | LPL | -1.829387514 | 1.72×10-16 |
IGJ | 1.90309721 | 1.38×10-7 | ZFP36 | -1.683736259 | 1.95×10-13 |
VCAN | 1.830704374 | 9.5×10-8 | ALDOB | -1.537200778 | 4.47×10-5 |
MOXD1 | 1.764184138 | 8.5×10-11 | FOSB | -1.527474388 | 2.82×10-10 |
COL1A2 | 1.716058931 | 5.2×10-12 | EGR1 | -1.526816671 | 1.19×10-6 |
C7 | 1.698285969 | 1.83×10-8 | CYP27B1 | -1.526356948 | 2.94×10-11 |
CCL19 | 1.538100328 | 2.34×10-8 | UMOD | -1.494821792 | 2.77×10-5 |
ADH1B | 1.527694813 | 4.53×10-8 | HPGD | -1.491939257 | 1.49×10-8 |
COL6A3 | 1.45202264 | 7.49×10-11 | HPD | -1.476264604 | 7.57×10-6 |
MARCKS | 1.429551387 | 1.92×10-10 | EGF | -1.471530504 | 2.5×10-11 |
TNC | 1.427538552 | 1.01×10-9 | KNG1 | -1.463898156 | 3.23×10-6 |
MS4A6A | 1.397713434 | 2.25×10-9 | APOH | -1.412843883 | 6.19×10-9 |
LTF | 1.389034747 | 3.58×10-6 | AFM | -1.401540175 | 1.98×10-6 |
IGKC | 1.367567925 | 1.34×10-6 | TPPP3 | -1.366144814 | 8.14×10-14 |
THBS2 | 1.347011952 | 3.75×10-10 | ESM1 | -1.359050399 | 1.23×10-9 |
COL3A1 | 1.343621855 | 5.48×10-8 | DUSP1 | -1.355440112 | 4.6×10-18 |
CCL21 | 1.330208775 | 2.07×10-6 | S100A12 | -1.354199988 | 5.61×10-8 |
Fig.9 Molecular docking patterns of the core components with the key core targets. A: SRC-quercetin. B: SRC-kaempferol. C: SRC-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one. D: SRC-(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one. E: EGFR-quercetin. F: EGFR-kaempferol. G: EGFR-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one. H: EGFR-(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one. I: AKT1-quercetin. J: AKT1-kaempferol. K: AKT1-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one. L: AKT1-(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one.
Fig.10 Pathological changes of renal tissues in mice with DKD (PAS staining, scale bar: 50 μm). A: Control group. B: Model group. C: Traditional Chinese medicine group. D: Positive control group.
Gene | Degree |
---|---|
SRC | 48 |
PIK3R1 | 34 |
HSP90AA1 | 32 |
ESR1 | 28 |
PTPN11 | 28 |
EGFR | 24 |
AKT1 | 22 |
PTK2 | 22 |
KDR | 20 |
Tab.3 Core targets of Euonymus alatus in treatment of DKD
Gene | Degree |
---|---|
SRC | 48 |
PIK3R1 | 34 |
HSP90AA1 | 32 |
ESR1 | 28 |
PTPN11 | 28 |
EGFR | 24 |
AKT1 | 22 |
PTK2 | 22 |
KDR | 20 |
Core targets | Target protein | TCMSP serial number | Active ingredients | Number of hydrogen bonds | Combination way | Affinity(kJ/mol) |
---|---|---|---|---|---|---|
SRC | 5MTJ | MOL000098 | Quercetin | 9 | Hydorgen interaction | -6.92 |
MOL000422 | Kaempferol | 4 | Hydrophobic interaction, Hydorgen interaction | -5.84 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 4 | Hydrophobic interaction, Hydorgen interaction | -5.71 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 6 | Hydrophobic interaction, Hydorgen interaction | -6.67 | ||
EGFR | 6Z4D | MOL000098 | quercetin | 6 | Hydrophobic interaction, Hydorgen interaction | -4.74 |
MOL000422 | kaempferol | 1 | Hydrophobic interaction, Hydorgen interaction | -5.65 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 5 | Hydrophobic interaction, Hydorgen interaction | -4.80 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 4 | Hydrophobic interaction, Hydorgen interaction | -4.87 | ||
AKT1 | 7NH4 | MOL000098 | Quercetin | 7 | Hydrophobic interaction, Hydorgen interaction | -5.43 |
MOL000422 | Kaempferol | 6 | Hydrophobic interaction, Hydorgen interaction | -4.97 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 3 | Hydrophobic interaction, Hydorgen interaction, Π-Cation interaction | -5.59 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 3 | Hydrophobic interaction, Hydorgen interaction | -6.52 |
Tab.4 Molecular docking results
Core targets | Target protein | TCMSP serial number | Active ingredients | Number of hydrogen bonds | Combination way | Affinity(kJ/mol) |
---|---|---|---|---|---|---|
SRC | 5MTJ | MOL000098 | Quercetin | 9 | Hydorgen interaction | -6.92 |
MOL000422 | Kaempferol | 4 | Hydrophobic interaction, Hydorgen interaction | -5.84 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 4 | Hydrophobic interaction, Hydorgen interaction | -5.71 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 6 | Hydrophobic interaction, Hydorgen interaction | -6.67 | ||
EGFR | 6Z4D | MOL000098 | quercetin | 6 | Hydrophobic interaction, Hydorgen interaction | -4.74 |
MOL000422 | kaempferol | 1 | Hydrophobic interaction, Hydorgen interaction | -5.65 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 5 | Hydrophobic interaction, Hydorgen interaction | -4.80 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 4 | Hydrophobic interaction, Hydorgen interaction | -4.87 | ||
AKT1 | 7NH4 | MOL000098 | Quercetin | 7 | Hydrophobic interaction, Hydorgen interaction | -5.43 |
MOL000422 | Kaempferol | 6 | Hydrophobic interaction, Hydorgen interaction | -4.97 | ||
MOL005100 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one | 3 | Hydrophobic interaction, Hydorgen interaction, Π-Cation interaction | -5.59 | ||
MOL001040 | (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | 3 | Hydrophobic interaction, Hydorgen interaction | -6.52 |
Group | SRC | EGFR | AKT1 |
---|---|---|---|
Control | 1.10±0.11 | 1.25±0.22 | 1.04±0.06 |
Model | 3.73±0.03## | 3.15±0.03## | 3.23±0.03## |
Chinese medicine | 2.72±0.02* | 2.85±0.01* | 2.79±0.01* |
Positive control | 2.13±0.01* | 2.25±0.02** | 2.19±0.01** |
Tab.5 Effect of Euonymus alatus on mRNA expressions of SRC, EGFR and AKT1 in mice (n=9, Mean±SD)
Group | SRC | EGFR | AKT1 |
---|---|---|---|
Control | 1.10±0.11 | 1.25±0.22 | 1.04±0.06 |
Model | 3.73±0.03## | 3.15±0.03## | 3.23±0.03## |
Chinese medicine | 2.72±0.02* | 2.85±0.01* | 2.79±0.01* |
Positive control | 2.13±0.01* | 2.25±0.02** | 2.19±0.01** |
Group | SRC | EGFR | AKT1 |
---|---|---|---|
Control | 0.53±0.02 | 0.70±0.02 | 0.49±0.02 |
Model | 3.50±0.01## | 2.40±0.02## | 2.85±0.03## |
Chinese medicine | 1.65±0.03* | 1.84±0.00* | 1.72±0.02* |
Positive control | 1.00±0.01* | 1.24±0.01** | 1.03±0.01** |
Tab.6 Effect of Euonymus alatus on protein expressions of SRC, EGFR and AKT1 in mice (n=9, Mean±SD)
Group | SRC | EGFR | AKT1 |
---|---|---|---|
Control | 0.53±0.02 | 0.70±0.02 | 0.49±0.02 |
Model | 3.50±0.01## | 2.40±0.02## | 2.85±0.03## |
Chinese medicine | 1.65±0.03* | 1.84±0.00* | 1.72±0.02* |
Positive control | 1.00±0.01* | 1.24±0.01** | 1.03±0.01** |
1 | 魏瑞贤, 杨丽霞, 崔阳阳, 等. 黄芪多糖对糖尿病肾病小鼠肾组织血管内皮损伤的影响[J]. 中国临床药理学杂志, 2023, 39(21): 3130-3. |
2 | 姜晓雪, 金智生, 陈彦旭, 等. 基于NLRP3/Caspase-1信号通路探讨红芪多糖对糖尿病肾病db/db小鼠作用机制[J]. 中国临床药理学杂志, 2023, 39(21): 3125-9. |
3 | Kaur P, Kotru S, Singh S, et al. miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms[J]. J Physiol Biochem, 2022, 78(1): 19-37. |
4 | 朱 清, 韩佳瑞, 庞欣欣, 等. 基于AMPK信号通路探讨中医药防治糖尿病肾脏疾病的研究进展[J/OL]. 中药药理与临床, 2023: 1-13. doi: 10.13412/j.cnki.zyyl.20231109.001 . |
5 | 刘心雨, 郑伟英. 依帕司他联合贝那普利对老年糖尿病肾病患者ICAM-1、VCAM-1和HMGB1水平及炎症因子的影响[J]. 中国老年学杂志, 2023, 43(20): 4991-4. |
6 | 张亚亨, 盛广宇, 宋 婷, 等. 玉蚕颗粒改善足细胞损伤治疗糖尿病肾病的机制研究[J]. 上海中医药杂志, 2023, 57(11): 77-84. |
7 | 谢旦红, 徐 杰, 杨 鑫, 等. 益气养阴化瘀方联合达格列净治疗糖尿病肾病对肾功能及血液流变学与凝血功能的影响[J]. 中药材, 2022, 45(8): 1990-2. |
8 | 徐 洋, 王 敏, 张恒璐, 等. 达格列净通过Rffl抑制STAT1/TGF-β1信号通路改善糖尿病肾病肾小管上皮细胞EMT和纤维化[J]. 南京医科大学学报: 自然科学版, 2023, 43(9): 1201-7. |
9 | 郭延秀, 席少阳, 马 毅, 等. 鬼箭羽化学成分及药理活性研究进展[J]. 中国现代应用药学, 2021, 38(18): 2305-16. |
10 | 洑晓哲, 张耀夫, 赵进喜, 等. 赵进喜应用鬼箭羽、牛蒡子对药治疗糖尿病肾脏病经验探析[J]. 中华中医药杂志, 2021, 36(8): 4742-4. |
11 | 文 辉, 黄思芸, 赖俊玉, 等. 鬼箭羽治疗糖尿病肾病探讨[J]. 实用中医药杂志, 2022, 38(10): 1812-4. |
12 | 杨 鑫, 刘春莹. 鬼箭羽治疗糖尿病肾病药理机制的研究进展[J]. 中华老年多器官疾病杂志, 2023, 22(7): 557-60. |
13 | 杜雨璇, 谢治深, 徐江雁, 等. 鬼箭羽化学成分和药理作用的研究进展及其质量标志物预测[J]. 天然产物研究与开发, 2024, 36(6): 1064-81, 1044. |
14 | 孙瑞茜, 彭 静, 郭 健, 等. 鬼箭羽的现代药理作用研究成果[J]. 环球中医药, 2015, 8(2): 245-9. DOI: 10.3969/j.issn.1674-1749.2015.02.039 |
15 | 王 函, 文 辉, 赖俊玉, 等. 基于网络药理学结合体内实验揭示黄芪—鬼箭羽方治疗糖尿病肾病的核心靶点及分子机制[J]. 临床合理用药, 2023, 16(33): 150-5. |
16 | 张贵斌, 张闫斌, 许 涵, 等. 基于GEO数据库筛选多发性硬化症关键基因Kcnc1、Kcnc2的分析研究[J]. 中国免疫学杂志, 2023, 39(8): 1600-4. |
17 | Su WX, Zhao Y, Wei YQ, et al. Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis[J]. Front Immunol, 2021, 27(12): 667690. |
18 | 李明侠, 李小会. 糖尿病肾病蛋白尿中医研究进展[J]. 现代中西医结合杂志, 2023, 32(18): 2623-8. |
19 | 卜祥辉, 安海燕, 安晓娜, 等. 基于网络药理学与分子对接探究鬼箭羽治疗糖尿病肾病的作用机制[J]. 湖南中医药大学学报, 2021, 41(10): 1564-73. DOI: 10.3969/j.issn.1674-070X.2021.10.017 |
20 | 周丽霞, 王继革, 张娜娜. 鬼箭羽药效学研究概况[J]. 中医临床研究, 2016, 8(12): 134-6. |
21 | 陈 慧, 赵进喜. 赵进喜治疗糖尿病肾病经验[J]. 中医杂志, 2011, 52(4): 344-5. |
22 | 王兴红, 孙 静, 马永超, 等. 槲皮素对糖尿病肾病小鼠肾脏P2X7R/NLRP3信号通路和纤维化的影响[J]. 中药药理与临床, 2023, 39(6): 48-53. |
23 | 黄小翠, 于赵龙, 祝子健, 等. 槲皮素对糖尿病大鼠肾脏保护作用研究[J]. 赣南医学院学报, 2023, 43(3): 262-6. |
24 | 朱开梅, 唐丽霞, 赵文鹏, 等. 槲皮素脂质体对糖尿病肾病氧化应激和TGF-β1/Smad7通路的影响[J]. 安徽医科大学学报, 2017, 52(3): 319-23. |
25 | 吴素珍, 李加林, 陈水亲. 槲皮素对高糖诱导肾小球系膜细胞增殖及TGF-β1/Smads信号通路的影响[J]. 中国中医基础医学杂志, 2016, 22(2): 195-7, 215. |
26 | 段 斌, 高妍婷, 杜 鹏, 等. 山奈酚对高糖条件下人肾小球内皮细胞氧化应激及凋亡的影响[J]. 疑难病杂志, 2019, 18(4): 403-6. |
27 | 江一峰, 周雪雪, 黄盈盈, 等. 香叶木素对Ⅱ型糖尿病小鼠的降血糖作用[J]. 中国食品学报, 2022, 22(6): 177-89. |
28 | 雷静文, 郭小莉, 宋丽华, 等. 香叶木素对高糖诱导的血管内皮细胞损伤的保护作用[J]. 中国临床药理学杂志, 2022, 38(22): 2679-83. |
29 | 周鑫帝, 甘 淳, 陈婉冰, 等. 通过SRC3敲低改善糖尿病肾病肾功能紊乱的实验研究[J]. 中国生物工程杂志, 2023, 43(7): 23-35. |
30 | Xie YR, Yuan Q, Cao XY, et al. Deficiency of nuclear receptor coactivator 3 aggravates diabetic kidney disease by impairing podocyte autophagy[J]. Adv Sci, 2024, 11(19): e2308378. |
31 | Yu C, Li Z, Nie CL, et al. Targeting Src homology phosphatase 2 ameliorates mouse diabetic nephropathy by attenuating ERK/NF-κB pathway-mediated renal inflammation[J]. Cell Commun Signal, 2023, 21(1): 362. |
32 | Hussain M, Ikram W, Ikram U. Role of c-Src and reactive oxygen species in cardiovascular diseases[J]. Mol Genet Genomics, 2023, 298(2): 315-28. |
33 | 魏艳红. PKCα介导的EGFR降解在糖尿病肾病足细胞损伤中的作用及机制[D]. 武汉: 华中科技大学, 2015. |
34 | Zhang SJ, Zhang YF, Bai XH, et al. Integrated network pharmacology analysis and experimental validation to elucidate the mechanism of acteoside in treating diabetic kidney disease[J]. Drug Des Devel Ther, 2024, 18: 1439-57. |
35 | 孙艳红. eGFR在2型糖尿病早期肾病中的临床意义[D]. 沈阳: 中国医科大学, 2012. |
36 | 朱 墨, 郭长彬. Akt抑制剂的研究进展[J]. 中国药物化学杂志, 2021, 31(11): 921-8. |
37 | 高 飞, 谢惠迪, 于博睿, 等. 芪地糖肾方调控Akt1/HIF-1α/Bcl-xl信号通路提高糖尿病肾病足细胞自噬的机制[J]. 中国实验方剂学杂志, 2024, 30(15): 90-7. |
38 | 尹德辉, 唐诗韵, 吴 珠, 等. 益智仁-乌药药对调控PI3K/Akt/mTOR通路介导细胞自噬保护肾小球足细胞的作用机制研究[J]. 中华中医药学刊, 2024, 42(1): 30-4, 262-4. |
39 | Dorotea D, Jiang SL, Pak ES, et al. Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress[J]. Exp Mol Med, 2022, 54(8): 1086-97. |
40 | Chen SN, Li B, Chen L, et al. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation[J]. J Transl Med, 2023, 21(1): 380. |
41 | Asmy VKSS, Natarajan J. Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease[J]. Genomics Inform, 2022, 20(3): e26. |
42 | Gao YY, Nan Z. Mechanistic insights into the use of rhubarb in diabetic kidney disease treatment using network pharmacology[J]. Medicine, 2022, 101(1): e28465. |
[1] | Benju LIU, Yelei WANG, Haiwen REN, Liwen OU, Xuan DENG, Mengxin HUANG, Xin WU, Quan GONG. 3-Methyladenine alleviates early renal injury in diabetic mice by inhibiting AKT signaling [J]. Journal of Southern Medical University, 2024, 44(7): 1236-1242. |
[2] | Ruibo LI, Ge GAO, Xi XIE, Haibin LUO. Oral submucosal fibrosis induced by active components in areca nut: a network pharmacology-based analysis and validation of the mechanism [J]. Journal of Southern Medical University, 2024, 44(5): 930-940. |
[3] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
[4] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[5] | CUI Yixin, WANG Decai, XIE Dongqing, WANG Haiming, XU Ruixin, TANG Xiaoran, ZHANG Yin. Efficacy of navel application of Jianpiwenyang Gel for chronic diarrhea of spleen and stomach weakness type: a randomized controlled trial and analysis of the mechanism [J]. Journal of Southern Medical University, 2024, 44(2): 217-225. |
[6] | ZHANG Qian, ZHANG Meikui, LIU Yinglu, WANG Yan, LV Feifei, WANG Yuguo. Exploring the therapeutic mechanism of Liuwei Suanzao decoction for perimenopausal insomnia based on network pharmacology and animal experiments [J]. Journal of Southern Medical University, 2023, 43(9): 1536-1547. |
[7] | ZHANG Xuefang, CHEN Yanhua, LI Zongheng, SHANG Jing, YUAN Zeting, DENG Wanli, LUO Ying, HAN Na, YIN Peihao, YIN Jun. Analysis of therapeutic mechanism of Liushen Wan against colitis-associated colorectal cancer based on network pharmacology and validation in mice [J]. Journal of Southern Medical University, 2023, 43(7): 1051-1062. |
[8] | LIU Fang, ZHANG Yuanfang, LIU Peng, LIU Jiamin, LIU Siyu, WANG Junjie. UPLC-Q-TOF-MS/MS combined with network pharmacology for exploring anti-inflammatory mechanism of Eurycoma longifolia [J]. Journal of Southern Medical University, 2023, 43(6): 879-888. |
[9] | LUO Guanfeng, LIU Huaxi, XIE Bei, DENG Yijian, XIE Penghui, ZHAO Xiaoshan, SUN Xiaomin. Therapeutic mechanism of Shenbing Decoction III for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats [J]. Journal of Southern Medical University, 2023, 43(6): 924-934. |
[10] | SUN Yang, XU Yibo, XIAO Linyu, ZHU Guoqing, LI Jing, SONG Xue, XU Lei, HU Jianguo. Acetylcorynoline inhibits microglia activation by regulating EGFR/MAPK signaling to promote functional recovery of injured mouse spinal cord [J]. Journal of Southern Medical University, 2023, 43(6): 915-923. |
[11] | ZHAO Yuxi, ZHAO Xu, ZHU Qingnan, ZHU Bingrui, ZHANG Zhenbin, CHEN Jing. Therapeutic mechanism of Guizhi Gancao Decoction for heart failure: a network pharmacology-based analysis [J]. Journal of Southern Medical University, 2023, 43(5): 772-782. |
[12] | ZHANG Yu, TU Xing, ZHANG Yan, WEN Dejian, ZHAO Fangyu, YUAN Lin, LI Wenhui. Anti-inflammatory mechanism of Balanophora involucrata: a network pharmacology and molecular docking-based analysis and verification in lipopolysaccharide-induced RAW264.7 cells [J]. Journal of Southern Medical University, 2023, 43(3): 383-392. |
[13] | WAN Lu, QIAN Yuchi, NI Wenjing, LU Yuxin, LI Wei, PAN Yan, CHEN Weidong. Linagliptin improves diabetic kidney disease in rats by promoting mitochondrial biogenesis through the AMPK/PGC-1α/TFAM pathway [J]. Journal of Southern Medical University, 2023, 43(12): 2053-2060. |
[14] | REN Yi, LU Jinying, YU Lu, LI Zongzhe, WANG Gao, YANG Jing. Carnosine protects against diabetic nephropathy in rats by activating the AKT/mTOR pathway and restoring autophagy in the renal tissue [J]. Journal of Southern Medical University, 2023, 43(11): 1965-1970. |
[15] | HOU Tian, QIN Yazhi, ZHANG Yan, WEN Guochen, QI Mengchun, DONG Wei. Teriparatide regulates osteoblast differentiation in high-glucose microenvironment through the cAMP/PKA/CREB signaling pathway [J]. Journal of Southern Medical University, 2023, 43(1): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||