Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (7): 1336-1344.doi: 10.12122/j.issn.1673-4254.2024.07.13
Yan HUANG1(), Lulu QIN1, Shaoxing GUAN2, Yanping GUANG2, Yuru WEI2, Ailing CAO2, Dongmei LI3, Guining WEI3(
), Qibiao SU1(
)
Received:
2023-12-21
Online:
2024-07-20
Published:
2024-07-25
Contact:
Guining WEI, Qibiao SU
E-mail:211214003@gdpu.edu.cn;weiguining2013@163.com;suqibiao@163.com
Supported by:
Yan HUANG, Lulu QIN, Shaoxing GUAN, Yanping GUANG, Yuru WEI, Ailing CAO, Dongmei LI, Guining WEI, Qibiao SU. Therapeutic mechanism of aqueous extract of Semiliquidambar cathayensis Chang root for pancreatic cancer: the active components, therapeutic targets and pathways[J]. Journal of Southern Medical University, 2024, 44(7): 1336-1344.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.07.13
Fig.1 IC50 of Semiliquidambar cathayensis Chang root extract (SC) and 5-fluorouracil for different cancer cell lines. A-H: IC50 of Semiliquidambar cathayensis Chang against T98G, MCF-7, HePG2, Panc-1, A549, HCT116, A375, and NCI-H1299 cells; I: IC50 of 5-FU against Panc-1 cells.
Ingredient | CAS | Degree |
---|---|---|
Quercetin | 117-39-5 | 52 |
Kaempferol | 520-18-3 | 51 |
Naringenin | 480-41-1 | 50 |
2,3,8-Tri-O-methylellagic acid | 1617-49-8 | 31 |
Oleanolic acid | 508-02-1 | 29 |
Paeoniflorin | 23180-57-6 | 27 |
Bergaptol | 486-60-2 | 26 |
Palmitic acid | 57-10-3 | 25 |
Fraxin | 524-30-1 | 20 |
Beta-Sitosterol | 83-46-5 | 17 |
Songorine | 509-24-0 | 16 |
Atractylenolide-1 | 73069-13-3 | 14 |
Daucosterol | 474-58-8 | 14 |
Hyperoside | 482-36-0 | 11 |
Gallic acid | 149-91-7 | 10 |
Isoquercitrin | 21637-25-2 | 9 |
Rutin | 153-18-4 | 9 |
Acteoside(Verbascoside) | 61276-17-3 | 5 |
Tab.1 Main active components in Semiliquidambar cathayensis Chang root
Ingredient | CAS | Degree |
---|---|---|
Quercetin | 117-39-5 | 52 |
Kaempferol | 520-18-3 | 51 |
Naringenin | 480-41-1 | 50 |
2,3,8-Tri-O-methylellagic acid | 1617-49-8 | 31 |
Oleanolic acid | 508-02-1 | 29 |
Paeoniflorin | 23180-57-6 | 27 |
Bergaptol | 486-60-2 | 26 |
Palmitic acid | 57-10-3 | 25 |
Fraxin | 524-30-1 | 20 |
Beta-Sitosterol | 83-46-5 | 17 |
Songorine | 509-24-0 | 16 |
Atractylenolide-1 | 73069-13-3 | 14 |
Daucosterol | 474-58-8 | 14 |
Hyperoside | 482-36-0 | 11 |
Gallic acid | 149-91-7 | 10 |
Isoquercitrin | 21637-25-2 | 9 |
Rutin | 153-18-4 | 9 |
Acteoside(Verbascoside) | 61276-17-3 | 5 |
Fig.3 Prediction of the key components of Semiliquidambar cathayensis Chang. The circles indicate the target points of the intersection targets, and the V-shaped marks are the chemical components of Semiliquidambar cathayensis Chang. A darker color indicates a larger degree value.
Fig.4 Prediction of the key targets of Semiliquidambar cathayensis Chang and pancreatic cancer. The V-shaped marks indicate the key targets of Semiliquidambar cathayensis Chang, and the circles are other target points. A darker color indicates a larger degree value.
Affinity | Naringenin | 2, 3, 8-Tri-O-methylellagic acid | Quercetin | Kaempferol | Oleanolic acid |
---|---|---|---|---|---|
HSP90AA1 | -8.9 | -9.3 | -9.3 | -9.4 | -7.0 |
SRC | -8.3 | -7.9 | -8.8 | -8.6 | -9.1 |
STAT3 | -7.7 | -7.2 | -8.1 | -7.8 | -6.9 |
PIK3R1 | -8.3 | -6.1 | -8.6 | -8.7 | -9.7 |
AKTI | -8.7 | -8.5 | -7.9 | -7.9 | -8.1 |
Tab.2 Molecular docking score of the key components against the key targets
Affinity | Naringenin | 2, 3, 8-Tri-O-methylellagic acid | Quercetin | Kaempferol | Oleanolic acid |
---|---|---|---|---|---|
HSP90AA1 | -8.9 | -9.3 | -9.3 | -9.4 | -7.0 |
SRC | -8.3 | -7.9 | -8.8 | -8.6 | -9.1 |
STAT3 | -7.7 | -7.2 | -8.1 | -7.8 | -6.9 |
PIK3R1 | -8.3 | -6.1 | -8.6 | -8.7 | -9.7 |
AKTI | -8.7 | -8.5 | -7.9 | -7.9 | -8.1 |
1 | Huang JJ, Lok V, Ngai CH, et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer[J]. Gastroenterology, 2021, 160(3): 744-54. |
2 | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. |
3 | Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review[J]. JAMA, 2021, 326(9): 851-62. |
4 | Lin WF, Lu JY, Cheng BB, et al. Progress in research on the effects of traditional Chinese medicine on the tumor microenvironment[J]. J Integr Med, 2017, 15(4): 282-7. |
5 | 苏玉平, 刘 宇, 马晓琴, 等. 贵州黔东南地区半枫荷的研究进展[J]. 中央民族大学学报: 自然科学版, 2022, 31(1): 92-6. |
6 | 唐 娟, 刘晓龙, 胡成刚, 等. 半枫荷化学成分及药理作用研究进展[J]. 广州化工, 2022, 50(21): 7-10, 35. |
7 | 田晓明, 颜立红, 蒋利媛, 等. 半枫荷抗炎镇痛活性部位筛选及其成分分析[J]. 陕西中医药大学学报, 2021, 44(5): 63-8. |
8 | Shadhu K, Xi CH. Inflammation and pancreatic cancer: an updated review[J]. Saudi J Gastroenterol, 2019, 25(1): 3-13. |
9 | Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-74. |
10 | Stone ML, Beatty GL. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer[J]. Pharmacol Ther, 2019, 201: 202-13. |
11 | Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, et al. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer[J]. Cytokine Growth Factor Rev, 2018, 39: 46-61. |
12 | Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer[J]. Semin Cancer Biol, 2022, 80: 58-72. |
13 | 韩东波, 何俊慧, 贾春莲, 等. 基于NF-κB/TNF-α/IL-6通路探讨拟黑多刺蚁活性组分对脂多糖诱导抑郁小鼠神经炎症的影响[J]. 中药材, 2023, 46(10): 2551-7. |
14 | 何 飞, 李冬梅, 苏启表, 等. 拟黑多刺蚁活性组分治疗小鼠皮肤瘙痒的实验研究[J]. 中药材, 2018, 41(5): 1200-3. |
15 | Pu XY, Tian K, Sun JX, et al. Anti-inflammatory monoterpene esters from the stems of Illigera aromatica [J]. Nat Prod Res, 2021, 35(6): 960-6. |
16 | Su QB, Su H, Nong ZH, et al. Hypouricemic and nephroprotective effects of an active fraction from Polyrhachis vicina Roger on potassium oxonate-induced hyperuricemia in rats[J]. Kidney Blood Press Res, 2018, 43(1): 220-33. |
17 | 韦 洁, 李冬梅, 何俊慧, 等. 香青藤提取物通过Wnt/β-catenin信号通路抑制胶质瘤U87细胞的间质转化[J]. 中国免疫学杂志, 2023, 39(7): 1431-6. DOI: 10.3969/j.issn.1000-484X.2023.07.016 |
18 | 韦 贤, 李冬梅, 何俊慧, 等. 拟黑多刺蚁活性组分通过miR-186-5p/Cx43促进结直肠癌SW116细胞凋亡的作用[J]. 中成药, 2022, 44(6): 1783-91. DOI: 10.3969/j.issn.1001-1528.2022.06.011 |
19 | Li DM, Zhong M, Su QB, et al. Active fraction of Polyrhachis vicina Rogers (AFPR) suppressed breast cancer growth and progression via regulating EGR1/lncRNA-NKILA/NF-κB axis[J]. Biomedecine Pharmacother, 2020, 123: 109616. |
20 | Li DM, Zhu FC, Wei J, et al. The Active Fraction of Polyrhachis vicina Roger (AFPR) activates ERK to cause necroptosis in colorectal cancer[J]. J Ethnopharmacol, 2023, 312: 116454. |
21 | 何俊慧, 韦 洁, 李冬梅, 等. 基于网络药理学、分子对接和动物实验探究壮药金缕半枫荷对抑郁症炎症的作用机制[J]. 中国药理学通报, 2023, 39(7): 1362-70. |
22 | 卢海啸, 吕思颖, 姚水莲, 等. 金缕半枫荷甲醇部位化学成分研究[J]. 中药材, 2022, 45(3): 606-10. |
23 | 裘 硕, 陈月圆, 颜小捷, 等. 金缕半枫荷叶化学成分研究[J]. 中药材, 2020, 43(5): 1134-7. |
24 | Yang L, Liu RH, He JW. Rapid analysis of the chemical compositions in Semiliquidambar cathayensis roots by ultra high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry[J]. Molecules, 2019, 24(22): 4098. |
25 | Zhu D, Qu XC, Sun XM, et al. Comparative authentication of Semiliquidambar cathayensis and its substituted species via macroscopic and microscopic features[J]. Chin Herb Med, 2022, 14(4): 535-42. |
26 | Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. |
27 | Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023, 309: 116306. |
28 | Mortazavi M, Moosavi F, Martini M, et al. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer[J]. Crit Rev Oncol Hematol, 2022, 176: 103749. |
29 | Kong Y, Li YT, Luo YM, et al. circNFIB1 inhibits lymphan-giogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer[J]. Mol Cancer, 2020, 19(1): 82. |
30 | Xu RY, Song JL, Ruze R, et al. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway[J]. Cell Death Dis, 2023, 14(8): 497. |
31 | Nwaeburu CC, Abukiwan A, Zhao ZF, et al. Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer[J]. Mol Cancer, 2017, 16(1): 23. |
32 | Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway[J]. Phytomedicine, 2019, 58: 152762. |
33 | Wang FJ, Wang L, Qu C, et al. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling[J]. BMC Cancer, 2021, 21(1): 396. |
34 | Shopit A, Li XD, Tang ZY, et al. MiR-421 up-regulation by the oleanolic acid derivative K73-03 regulates epigenetically SPINK1 transcription in pancreatic cancer cells leading to metabolic changes and enhanced apoptosis[J]. Pharmacol Res, 2020, 161: 105130. |
35 | Zhong B, Shen JX, Zhang CY, et al. Plasma heat shock protein 90 alpha: a valuable predictor of early chemotherapy effectiveness in advanced non-small-cell lung cancer[J]. Med Sci Monit, 2021, 27: e924778. |
36 | Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer[J]. J Clin Oncol, 2010, 28(7): 1254-61. |
37 | Higginbotham JN, Demory Beckler M, Gephart JD, et al. Amphiregulin exosomes increase cancer cell invasion[J]. Curr Biol, 2011, 21(9): 779-86. |
38 | Yotsumoto F, Fukami T, Yagi H, et al. Amphiregulin regulates the activation of ERK and Akt through epidermal growth factor receptor and HER3 signals involved in the progression of pancreatic cancer[J]. Cancer Sci, 2010, 101(11): 2351-60. |
39 | Albury TM, Pandey V, Gitto SB, et al. Constitutively active Akt1 cooperates with KRas(G12D) to accelerate in vivo pancreatic tumor onset and progression[J]. Neoplasia, 2015, 17(2): 175-82. |
40 | Kong Y, Luo YM, Zheng SY, et al. Mutant KRAS mediates circARFGEF2 biogenesis to promote lymphatic metastasis of panc-reatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83(18): 3077-94. |
[1] | Jinjin WANG, Wenfei CUI, Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN. Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1243-1255. |
[2] | Linyue WANG, Wenyue QI, Jihua GAO, Maosheng TIAN, Jiancheng XU. Tongyangxiao Lotion promotes postoperative wound healing in a rat model of anal fistula by downregulating inflammatory factors and suppressing inflammation [J]. Journal of Southern Medical University, 2024, 44(7): 1256-1265. |
[3] | Wenxiang ZHANG, Huixian GU, Pengde CHEN, Siyu WU, Hongyan MA, Lan YAO. Compound Yuye Decoction protects diabetic rats against cardiomyopathy by inhibiting myocardial apoptosis and inflammation via regulating the PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1306-1314. |
[4] | Ruibo LI, Ge GAO, Xi XIE, Haibin LUO. Oral submucosal fibrosis induced by active components in areca nut: a network pharmacology-based analysis and validation of the mechanism [J]. Journal of Southern Medical University, 2024, 44(5): 930-940. |
[5] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
[6] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[7] | CUI Yixin, WANG Decai, XIE Dongqing, WANG Haiming, XU Ruixin, TANG Xiaoran, ZHANG Yin. Efficacy of navel application of Jianpiwenyang Gel for chronic diarrhea of spleen and stomach weakness type: a randomized controlled trial and analysis of the mechanism [J]. Journal of Southern Medical University, 2024, 44(2): 217-225. |
[8] | SUN Jingjie, LU Peng, GUAN Shasha, LIU Songsong. Heterogeneity analysis of pancreatic cancer and identification of molecular subtypes of tumor cells based on CEACAM5, LGALS1 and CENPF gene expression [J]. Journal of Southern Medical University, 2023, 43(9): 1567-1576. |
[9] | ZHANG Qian, ZHANG Meikui, LIU Yinglu, WANG Yan, LV Feifei, WANG Yuguo. Exploring the therapeutic mechanism of Liuwei Suanzao decoction for perimenopausal insomnia based on network pharmacology and animal experiments [J]. Journal of Southern Medical University, 2023, 43(9): 1536-1547. |
[10] | ZHANG Xuefang, CHEN Yanhua, LI Zongheng, SHANG Jing, YUAN Zeting, DENG Wanli, LUO Ying, HAN Na, YIN Peihao, YIN Jun. Analysis of therapeutic mechanism of Liushen Wan against colitis-associated colorectal cancer based on network pharmacology and validation in mice [J]. Journal of Southern Medical University, 2023, 43(7): 1051-1062. |
[11] | LIU Fang, ZHANG Yuanfang, LIU Peng, LIU Jiamin, LIU Siyu, WANG Junjie. UPLC-Q-TOF-MS/MS combined with network pharmacology for exploring anti-inflammatory mechanism of Eurycoma longifolia [J]. Journal of Southern Medical University, 2023, 43(6): 879-888. |
[12] | LUO Guanfeng, LIU Huaxi, XIE Bei, DENG Yijian, XIE Penghui, ZHAO Xiaoshan, SUN Xiaomin. Therapeutic mechanism of Shenbing Decoction III for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats [J]. Journal of Southern Medical University, 2023, 43(6): 924-934. |
[13] | SUN Yang, XU Yibo, XIAO Linyu, ZHU Guoqing, LI Jing, SONG Xue, XU Lei, HU Jianguo. Acetylcorynoline inhibits microglia activation by regulating EGFR/MAPK signaling to promote functional recovery of injured mouse spinal cord [J]. Journal of Southern Medical University, 2023, 43(6): 915-923. |
[14] | LIANG Lidu, ZHANG Haojie, LU Qian, ZHOU Chenjie, LI Shulong. Advanced Faster RCNN: a non-contrast CT-based algorithm for detecting pancreatic lesions in multiple disease stages [J]. Journal of Southern Medical University, 2023, 43(5): 755-763. |
[15] | ZHAO Yuxi, ZHAO Xu, ZHU Qingnan, ZHU Bingrui, ZHANG Zhenbin, CHEN Jing. Therapeutic mechanism of Guizhi Gancao Decoction for heart failure: a network pharmacology-based analysis [J]. Journal of Southern Medical University, 2023, 43(5): 772-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||