Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (7): 1513-1518.doi: 10.12122/j.issn.1673-4254.2025.07.18
Previous Articles Next Articles
Hongbo ZHANG(), Mengyu YAN, Jiandong ZHANG, Peiwang SUN, Rui WANG, Yuanyuan GUO(
)
Received:
2025-01-07
Online:
2025-07-20
Published:
2025-07-17
Contact:
Yuanyuan GUO
E-mail:zhanghb0221@163.com;guoshaohua111@163.com
Hongbo ZHANG, Mengyu YAN, Jiandong ZHANG, Peiwang SUN, Rui WANG, Yuanyuan GUO. Pirfenidone inhibits bladder cancer xenograft growth in mice by regulating regulatory T cells[J]. Journal of Southern Medical University, 2025, 45(7): 1513-1518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.07.18
Fig.1 Effect of PFD on tumor growth in the mouse models bearing bladder cancer xenografts. A: Tumor growth rate in control and PFD groups. B: Tumor volume in the two groups after 21 days of PFD treatment. C: Survival rate of the mice in two groups. *P<0.05, **P<0.01.
Fig.2 Effect of PFD on the quantity of T cells in tumor tissues. A: CD3+, CD4+, CD8+ and Foxp3+ T cells in bladder cancer tissues detected by immunohistochemistry (Original magnification: ×100). B-E: Quantitative analysis of CD3+ (B), CD4+ (C), CD8+ (D) and Foxp3+ (E) T cells. *P<0.05.
Fig.3 Effect of PFD on Treg cells-associated factors in the tumor tissues. A, B: Flow cytometry for detecting CD4+CD25+Foxp3+ Treg cells in the tumor tissues of control (A) and PFD (B) groups. C: Quantitative analysis of CD4+CD25+Foxp3+ Treg cells in the two groups. D-F: RT-qPCR for detecting mRNA expressions of IL-2 (D), IL-10 (E) and IL-35 (F) in the tumor tissues. *P<0.05.
Fig.4 Effect of PFD on Treg cells in the spleen tissues of the tumor-bearing mice. A, B: Flow cytometry for detecting CD4+CD25+Foxp3+ Treg cells in the spleen tissues of control (A) and PFD (B) groups. C: Quantitative analysis of CD4+CD25+Foxp3+ Treg cells in the two groups. D-F: RT-qPCR for detecting mRNA expressions of IL-2 (D), IL-10 (E) and IL-35 (F) in the spleen tissues.
[1] | Dobruch J, Oszczudłowski M. Bladder Cancer: Current Challenges and Future Directions. Medicina (Kaunas), 2021, 57(8):749. doi:10.3390/medicina57080749 |
[2] | Galsky MD, Guan X, Rishipathak D, et al. Immunomodulatory effects and improved outcomes with cisplatin-versus carboplatin-based chemotherapy plus atezolizumab in urothelial cancer[J]. Cell Rep Med, 2024, 5(2):101393. doi:10.1016/j.xcrm.2024.101393 |
[3] | Xu J, Zhang H, Zhang L, et al. Real-world effectiveness and safety of RC48-ADC alone or in combination with PD-1 inhibitors for patients with locally advanced or metastatic urothelial carcinoma: a multicenter, retrospective clinical study[J]. Cancer Med, 2023, 12(23): 21159-71. doi:10.1002/cam4.6680 |
[4] | Zhou T, Xiao Z, Lu J, et al. IGF2BP3-mediated regulation of GLS and GLUD1 gene expression promotes treg-induced immune escape in human cervical cancer. Am J Cancer Res, 2023, 13(11): 5289-5305. |
[5] | van Gulijk M, van Krimpen A, Schetters S, et al. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance[J]. Sci Immunol, 2023, 8(83): eabn6173. doi:10.1126/sciimmunol.abn6173 |
[6] | Okato A, Utsumi T, Ranieri M, et al. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression[J]. J Clin Invest, 2024, 134(2): e169241. doi:10.1016/j.eururo.2024.03.031 |
[7] | 李 中, 黄 旭, 陈守峰, 等. 吡非尼酮通过抑制TGF-β1通路和炎症反应预防大鼠尿道损伤后的纤维化及狭窄[J]. 南方医科大学学报, 2022, 42(03): 411-417. doi:10.12122/j.issn.1673-4254.2022.03.14 |
[8] | Bluestone JA, McKenzie BS, Beilke J, et al. Opportunities for Treg cell therapy for the treatment of human disease[J]. Front Immunol, 2023, 14: 1166135. doi:10.3389/fimmu.2023.1166135 |
[9] | Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors[J]. Cancer Lett, 2019, 457: 168-79. doi:10.1016/j.canlet.2019.05.003 |
[10] | Li S, Zhang X, Pang D. Pirfenidone inhibits CCL2-mediated Treg chemotaxis induced by palbociclib and fulvestrant in HR+/HER2- breast cancer[J]. Int Immunopharmacol, 2024, 142(Pt A): 113059. doi:10.1016/j.intimp.2024.113059 |
[11] | 陈守峰, 张舒超, 樊伟林, 等. 吡非尼酮联合PD-L1抑制剂抑制小鼠异位膀胱肿瘤的生长[J].南方医科大学学报, 2024, 44(02): 210-6. doi:10.12122/j.issn.1673-4254.2024.02.02 |
[12] | Alsomali H, Palmer E, Aujayeb A, et al. Early diagnosis and treatment of idiopathic pulmonary fibrosis: a narrative review[J]. Pulm Ther, 2023, 9(2): 177-93. doi:10.1007/s41030-023-00216-0 |
[13] | Zhang S, Wang Y, Luo D, et al. Pirfenidone inhibits TGF-β1-induced metabolic reprogramming during epithelial-mesenchymal transition in non-small cell lung cancer[J]. J Cell Mol Med, 2024, 28(3): e18059. doi:10.1111/jcmm.18059 |
[14] | Yamamoto Y, Yano Y, Kuge T, et al. Safety and effectiveness of pirfenidone combined with carboplatin-based chemotherapy in patients with idiopathic pulmonary fibrosis and non-small cell lung cancer: a retrospective cohort study[J]. Thorac Cancer, 2020, 11(11): 3317-25. doi:10.1111/1759-7714.13675 |
[15] | Shi SY, Zhao LW, Liu CB, et al. Pirfenidone promotes cell cycle arrest and apoptosis of triple-negative breast cancer cells by suppressing Hedgehog/GLI1 signaling[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(5): 5915-25. doi:10.1007/s00210-024-03652-0 |
[16] | Zhang J, Zhang JR, Lin RG, et al. Pirfenidone antagonizes TGF-β1-mediated gabapentin resistance via reversal of desmoplasia and the 'cold' microenvironment in pancreatic cancer[J]. Cancer Lett, 2024, 605: 217287. doi:10.1016/j.canlet.2024.217287 |
[17] | Jamialahmadi H, Nazari SE, TanzadehPanah H, et al. Targeting transforming growth factor beta (TGF‑β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer[J]. Sci Rep, 2023, 13(1): 14357. doi:10.1038/s41598-023-41550-2 |
[18] | Kimura Y, Fujimori M, Rajagopalan NR, et al. Macrophage activity at the site of tumor ablation can promote murine urothelial cancer via transforming growth factor-β1[J]. Front Immunol, 2023, 14: 1070196. doi:10.3389/fimmu.2023.1070196 |
[19] | Park J, Hsueh PC, Li ZY, et al. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity[J]. Immunity, 2023, 56(1): 32-42. doi:10.1016/j.immuni.2022.12.008 |
[20] | de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. doi:10.1016/j.ccell.2023.02.016 |
[21] | Aboulkheyr Es H, Zhand S, Thiery JP, et al. Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta[J]. Integr Biol: Camb, 2020, 12(7): 188-97. doi:10.1093/intbio/zyaa014 |
[22] | Rastegar-Pouyani N, Abdolvahab MH, Farzin MA, et al. Targeting cancer-associated fibroblasts with pirfenidone: a novel approach for cancer therapy[J]. Tissue Cell, 2024, 91: 102624. doi:10.1016/j.tice.2024.102624 |
[23] | Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy[J]. Trends Cancer, 2023, 9(11): 911-27. doi:10.1016/j.trecan.2023.07.015 |
[24] | Exposito F, Redrado M, Houry M, et al. PTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells[J]. Cancer Res, 2023, 83(15): 2513-26. doi:10.1158/0008-5472.can-22-3023 |
[25] | Murai R, Itoh Y, Kageyama S, et al. Prediction of intravesical recurrence of non-muscle-invasive bladder cancer by evaluation of intratumoral Foxp3+ T cells in the primary transurethral resection of bladder tumor specimens[J]. PLoS One, 2018, 13(9): e0204745. doi:10.1371/journal.pone.0204745 |
[26] | Jou YC, Tsai YS, Lin CT, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation[J]. Oncotarget, 2016, 7(40): 65403-17. doi:10.18632/oncotarget.11395 |
[27] | Basu S, Hubbard B, Shevach EM. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells[J]. J Leukoc Biol, 2015, 97(2): 279-83. doi:10.1189/jlb.2ab0514-273rr |
[28] | Koll FJ, Banek S, Kluth L, et al. Tumor-associated macrophages and Tregs influence and represent immune cell infiltration of muscle-invasive bladder cancer and predict prognosis[J]. J Transl Med, 2023, 21(1): 124. doi:10.1186/s12967-023-03949-3 |
[1] | Wei SU, Houhua LAI, Xin TANG, Qun ZHOU, Yachun TANG, Hao FU, Xuancai CHEN. Apelin promotes proliferation, migration, and angiogenesis in bladder cancer by activating the FGF2/FGFR1 pathway [J]. Journal of Southern Medical University, 2025, 45(6): 1289-1296. |
[2] | Yutong LI, Xingyu SONG, Ruixu SUN, Xuan DONG, Hongwei LIU. A pan-cancer analysis of PYCR1 and its predictive value for chemotherapy and immunotherapy responses in bladder cancer [J]. Journal of Southern Medical University, 2025, 45(4): 880-892. |
[3] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
[4] | Xinrong HE, Sili XIONG, Zhenru ZHU, Jingyuan SUN, Chuanhui CAO, Hui WANG. Overexpression of ubiquitin-conjugating enzyme 2T induces radiotherapy resistance in hepatocellular carcinoma by enriching regulatory T cells in the tumor microenvironment [J]. Journal of Southern Medical University, 2024, 44(6): 1149-1158. |
[5] | GAO Zhiqiang, LIN Jie, HONG Peng, HU Zaihong, DONG Junjun, SHI Qinlin, TIAN Xiaomao, LIU Feng, WEI Guanghui. Identification of key genes in Wilms tumor based on high- throughput RNA sequencing and their impacts on prognosis and immune responses [J]. Journal of Southern Medical University, 2024, 44(4): 727-738. |
[6] | CHEN Shoufeng, ZHANG Shuchao, FAN Weilin, SUN Wei, LIU Beibei, LIU Jianmin, GUO Yuanyuan. Efficacy of combined treatment with pirfenidone and PD-L1 inhibitor in mice bearing ectopic bladder cancer xenograft [J]. Journal of Southern Medical University, 2024, 44(2): 210-216. |
[7] | Liqiang LI, Yuanyuan GUO, Chengyong WANG, Rui CHANG, Wei SUN, Wuyue GAO, Chao WANG, Beibei LIU. High expression of miR-204-5p promotes malignant behaviors of bladder cancer cells by negatively regulating RAB22A [J]. Journal of Southern Medical University, 2024, 44(11): 2235-2242. |
[8] | YAN Qiuxia, ZENG Peng, HUANG Shuqiang, TAN Cuiyu, ZHOU Xiuqin, QIAO Jing, ZHAO Xiaoying, FENG Ling, ZHU Zhenjie, ZHANG Guozhi, HU Hong, CHEN Cairong. RBMX overexpression inhibits proliferation, migration, invasion and glycolysis of human bladder cancer cells by downregulating PKM2 [J]. Journal of Southern Medical University, 2024, 44(1): 9-16. |
[9] | YAO Yina, LIU Jia, ZHOU Xiangjun, LIU Zeyu, QIU Shizhen, HE Yingzheng, ZHOU Xueqiong. A pan-cancer analysis of TTC9A expression level and its correlation with prognosis and immune microenvironment [J]. Journal of Southern Medical University, 2024, 44(1): 70-82. |
[10] | ZHANG Xiaolin, WU Haosong, WANG Sheng. SLC12A8 promotes proliferation, invasiveness, migration and epithelial-mesenchymal transition of bladder cancer cells by activating JAK/STAT singaling [J]. Journal of Southern Medical University, 2023, 43(9): 1613-1621. |
[11] | CAI Taonong, LU Jiangli, LIN Zhijun, LUP Mingrui, LIANG Haitao, QIN Zike, YE Yunlin. Intravesical instillation of bacillus Calmette-Guerin for non-muscle invasive bladder cancer: outcomes of 421 patients in a single center [J]. Journal of Southern Medical University, 2023, 43(3): 488-494. |
[12] | SUN Liu, JIAO Woer, KONG Yonggang, YANG Changliang, XU Shan, QIAO Yuelong, CHEN Shiming. Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis [J]. Journal of Southern Medical University, 2023, 43(2): 280-286. |
[13] | WANG Ning, WANG Yihan, JIANG Pengtao, LÜ Minghua, HU Zhifang, XU Xi. DNAM-1 regulates the proliferation and function of T regulatory type 1 cells via the IL-2/STAT5 pathway [J]. Journal of Southern Medical University, 2022, 42(9): 1288-1295. |
[14] | ZOU Zhenhai, CHENG Qi, LI Zhong, GAO Wuyue, SUN Wei, LIU Beibei, GUO Yuanyuan, LIU Jianmin. microRNA let-7g-3p regulates proliferation, migration, invasion and apoptosis of bladder cancer cells by targeting HMGB2 [J]. Journal of Southern Medical University, 2022, 42(9): 1335-1343. |
[15] | LI Zhong, Huang Xu, CHEN Shoufeng, ZHANG Zhijian, LIANG Xin, LI Haihui, QIN Lei, GUO Yuanyuan. Pirfenidone alleviates urethral stricture following urethral injury in rats by suppressing TGF-β1 signaling and inflammatory response [J]. Journal of Southern Medical University, 2022, 42(3): 411-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||