Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2330-2339.doi: 10.12122/j.issn.1673-4254.2025.11.05
Yahui LI1(
), Xin YANG2,4(
), Xueming YAO3, Cong HUANG2,3
Received:2025-03-05
Online:2025-11-20
Published:2025-11-28
Contact:
Xin YANG
E-mail:3844639309@qq.com;25066640@qq.com
Yahui LI, Xin YANG, Xueming YAO, Cong HUANG. Molecular mechanism of Xixian Pills for improving rheumatoid arthritis in rats: a proteomic analysis[J]. Journal of Southern Medical University, 2025, 45(11): 2330-2339.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.05
| Experimental equipment | Model | Company |
|---|---|---|
| Nanoscale liquid chromatography instrument | EASY-nLC | Thermo fisher scientific |
| Ultrasonic disrupter | JY96-IIN | Ningbo xinzhi |
| Low-temperature high-speed centrifuge | 5430R | Eppendorf |
| Vortex oscillator | G-560E | Scientific industries |
| Thermostatic incubator | GNP-9080 | Shanghai jinghong |
| Mass spectrometer | Orbitrap Exploris 480 | Thermo fisher scientific |
| Vacuum centrifuge concentrator | LNG-T98 | Taicang huamei |
| Ultraviolet spectrophotometer | 260 Bio | Thermo fisher scientific |
| High-performance liquid chromatography | 1260 infinity II | Agilent technologies, inc. |
| Nano Drop | ND3000 | Thermo fisher scientific |
Tab.1 Experimental instruments and equipment and their sources
| Experimental equipment | Model | Company |
|---|---|---|
| Nanoscale liquid chromatography instrument | EASY-nLC | Thermo fisher scientific |
| Ultrasonic disrupter | JY96-IIN | Ningbo xinzhi |
| Low-temperature high-speed centrifuge | 5430R | Eppendorf |
| Vortex oscillator | G-560E | Scientific industries |
| Thermostatic incubator | GNP-9080 | Shanghai jinghong |
| Mass spectrometer | Orbitrap Exploris 480 | Thermo fisher scientific |
| Vacuum centrifuge concentrator | LNG-T98 | Taicang huamei |
| Ultraviolet spectrophotometer | 260 Bio | Thermo fisher scientific |
| High-performance liquid chromatography | 1260 infinity II | Agilent technologies, inc. |
| Nano Drop | ND3000 | Thermo fisher scientific |
| Group | Ankle joint swelling degree | TNF-α (pg/L) | IL-6 (pg/L) | IL-10 (pg/L) |
|---|---|---|---|---|
| Control | 0.229±0.016 | 54.86±7.4 | 38.94±8.6 | 55.32±3.6 |
| Model | 0.364±0.012** | 144.68±10.2** | 77.34±12.4** | 22.62±6.1** |
| LGTDGP | 0.243±0.015## | 62.32±10.3## | 45.63±11.3## | 46.24±7.6# |
| XXW-H | 0.268±0.017## | 70.24±9.6## | 55.24±7.7## | 47.35±5.8## |
| XXW-M | 0.291±0.016# | 98.63±12.4# | 59.24±14.3# | 38.36±8.7# |
| XXW-L | 0.324±0.021 | 125.34±18.9 | 69.34±9.7 | 30.24±9.6 |
Tab.2 Ankle joint swelling degree and inflammatory factor levels in the rats in different groups
| Group | Ankle joint swelling degree | TNF-α (pg/L) | IL-6 (pg/L) | IL-10 (pg/L) |
|---|---|---|---|---|
| Control | 0.229±0.016 | 54.86±7.4 | 38.94±8.6 | 55.32±3.6 |
| Model | 0.364±0.012** | 144.68±10.2** | 77.34±12.4** | 22.62±6.1** |
| LGTDGP | 0.243±0.015## | 62.32±10.3## | 45.63±11.3## | 46.24±7.6# |
| XXW-H | 0.268±0.017## | 70.24±9.6## | 55.24±7.7## | 47.35±5.8## |
| XXW-M | 0.291±0.016# | 98.63±12.4# | 59.24±14.3# | 38.36±8.7# |
| XXW-L | 0.324±0.021 | 125.34±18.9 | 69.34±9.7 | 30.24±9.6 |
Fig.2 Analysis of differentially expressed proteins and core targets in rats with collagen-induced arthritis (CIA) and Xinxian Pills-treated rats. A: Volcano plot of the differential proteins. B: Intersection of the differential proteins between the CIA model group and the high-dose Xixian Pills group. C: Interaction analysis of the differential proteins.
| NO. Path name | Gene count P | FDR | ||
|---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 | Primary immunodeficiency Hematopoietic cell lineage Cytokine-cytokine receptor interaction Th17 cell differentiation Epstein-Barr virus infection Osteoclast differentiation Th1 and Th2 cell differentiation Human T-cell leukemia virus 1 infection Viral protein interaction with cytokine and cytokine receptor Breast cancer | 9 11 17 11 14 11 9 13 8 9 | 2.57E-10 1.34E-08 3.06E-08 3.33E-08 5.84E-08 5.47E-07 9.08E-07 1.24E-06 1.57E-05 6.57E-05 | 3.62E-08 9.43E-07 1.18E-06 1.18E-06 1.65E-06 1.29E-05 1.83E-05 2.19E-05 0.0002 0.0005 |
Tab.3 Differential gene pathway analysis
| NO. Path name | Gene count P | FDR | ||
|---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 | Primary immunodeficiency Hematopoietic cell lineage Cytokine-cytokine receptor interaction Th17 cell differentiation Epstein-Barr virus infection Osteoclast differentiation Th1 and Th2 cell differentiation Human T-cell leukemia virus 1 infection Viral protein interaction with cytokine and cytokine receptor Breast cancer | 9 11 17 11 14 11 9 13 8 9 | 2.57E-10 1.34E-08 3.06E-08 3.33E-08 5.84E-08 5.47E-07 9.08E-07 1.24E-06 1.57E-05 6.57E-05 | 3.62E-08 9.43E-07 1.18E-06 1.18E-06 1.65E-06 1.29E-05 1.83E-05 2.19E-05 0.0002 0.0005 |
| Group | CCL5(%) | CCL5 B | STAT1(%) | STAT1 B |
|---|---|---|---|---|
| Control | 12±3.1 | 1 | 13±3.2 | 1 |
| Model | 50±2.5** | 3 | 49±2.5** | 3 |
| LGTDGP | 23±2.5## | 2 | 22±2.0## | 2 |
| XXW-H | 30±2.5## | 2 | 33±2.5## | 2 |
Tab.4 Counts of CCL5- and STAT1-positive cells in rat ankle joint tissues and immunohistochemical scores (5 fields)
| Group | CCL5(%) | CCL5 B | STAT1(%) | STAT1 B |
|---|---|---|---|---|
| Control | 12±3.1 | 1 | 13±3.2 | 1 |
| Model | 50±2.5** | 3 | 49±2.5** | 3 |
| LGTDGP | 23±2.5## | 2 | 22±2.0## | 2 |
| XXW-H | 30±2.5## | 2 | 33±2.5## | 2 |
Fig.4 Expression of CCL5 in the ankle joints of the rats in each group (×200). A: Normal control group. B: Model group. C: Tripterygium glycosides tablet group. D: High-dose Xixian pill group.
Fig.5 Expression of STAT1 in the ankle joints of the rats in each group (×200). A: Normal control group. B: Model group. C: Tripterygium glycosides tablet group. D: High-dose Xixian pill group.
| Group | CCL5 (IOD) | CCL5(AOD) | STAT1 (IOD) | STAT1(AOD) |
|---|---|---|---|---|
| Control | 2804.89±222.73 | 0.22±0.02 | 2097.43±403.42 | 0.17±0.03 |
| Model | 13661.38±145.47** | 0.82±0.01** | 12904.86±720.16** | 0.78±0.05** |
| LGTDGP | 6487.84±228.86## | 0.42±0.01## | 6693.79±120.62## | 0.43±0.04## |
| XXW-H | 9687.52±253.10## | 0.60±0.02## | 9398.39±624.72## | 0.59±0.03## |
Tab.5 Optical density analysis of CCL5 and STAT1 on immunofluorescence staining images (5 fields)
| Group | CCL5 (IOD) | CCL5(AOD) | STAT1 (IOD) | STAT1(AOD) |
|---|---|---|---|---|
| Control | 2804.89±222.73 | 0.22±0.02 | 2097.43±403.42 | 0.17±0.03 |
| Model | 13661.38±145.47** | 0.82±0.01** | 12904.86±720.16** | 0.78±0.05** |
| LGTDGP | 6487.84±228.86## | 0.42±0.01## | 6693.79±120.62## | 0.43±0.04## |
| XXW-H | 9687.52±253.10## | 0.60±0.02## | 9398.39±624.72## | 0.59±0.03## |
Fig.6 Immunofluorescence detection of CCL5 expression in rat ankle joint tissue (×200). Green fluorescence indicates CCL5, while blue fluorescence indicates the cell nucleus (Scale bar=50 μm).
Fig.7 Immunofluorescence detection of STAT1 expression in rat ankle joint tissue (×200). Green fluorescence indicates STAT1, and blue fluorescence indicates the cell nucleus (Scale bar=50 μm).
| [1] | Wang GY, Zhang SL, Wang XR, et al. Remission of rheumatoid arthritis and potential determinants: a national multi-center cross-sectional survey[J]. Clin Rheumatol, 2015, 34(2): 221-30. doi:10.1007/s10067-014-2828-3 |
| [2] | Jin SY, Li MT, Fang YF, et al. Chinese registry of rheumatoid arthritis (CREDIT): II.prevalence and risk factors of major comorbidities in Chinese patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2017, 19(1): 251. doi:10.1186/s13075-017-1457-z |
| [3] | Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990-2017: a systematic analysis of the Global Burden of Disease study 2017[J]. Ann Rheum Dis, 2019, 78(11): 1463-71. doi:10.1136/annrheumdis-2019-215920 |
| [4] | Rudan I, Sidhu S, Papana A, et al. Prevalence of rheumatoid arthritis in low- and middle-income countries: a systematic review and analysis[J]. J Glob Health, 2015, 5(1): 010409. |
| [5] | Tsai SW, Hsieh MC, Li S, et al. Therapeutic potential of sclareol in experimental models of rheumatoid arthritis[J]. Int J Mol Sci, 2018, 19(5): E1351. doi:10.3390/ijms19051351 |
| [6] | Liu XY, Dawson SL, et al. Isobaric tagging and data independent acquisition as complementary strategies for proteome profiling on an orbitrap astral mass spectrometer[J]. J Proteome Res, 2025, 24(3): 1414-24. doi:10.1021/acs.jproteome.4c01107 |
| [7] | Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics[J]. Commun Chem, 2024, 7(1): 80. doi:10.1038/s42004-024-01162-x |
| [8] | Huang LX, Liang L, Ji ZY, et al. Proteomics profiling of CD4+T-cell-derived exosomes from patients with rheumatoid arthritis[J]. Int Immunopharmacol, 2023, 122: 110560. doi:10.1016/j.intimp.2023.110560 |
| [9] | Wang Q, Liang YY, Li KW, et al. Herba Siegesbeckiae: a review on its traditional uses, chemical constituents, pharmacological activities and clinical studies[J]. J Ethnopharmacol, 2021, 275: 114117. doi:10.1016/j.jep.2021.114117 |
| [10] | 胡慧华. 豨莶丸的配方优化及对实验性膝骨关节炎的药效及作用机理探讨[D]. 北京: 北京中医药大学, 2005. |
| [11] | 向 珊, 张宗星, 江 露, 等. 三百棒通过调控PI3K/Akt信号通路改善胶原诱导性类风湿性关节炎大鼠的血管翳[J].南方医科大学学报,2024, 44(8): 1582-8. |
| [12] | 夏俊锋, 杨全伟, 刘新国, 等. 豨莶草对大鼠佐剂型关节炎的治疗作用及机制研究[J]. 中国药师, 2021, 24(2): 242-6. |
| [13] | Xiao B, Li J, Qiao Z, et al. Therapeutic effects of Siegesbeckia orientalis L. and its active compound luteolin in rheumatoid arthritis: network pharmacology, molecular docking and experim-ental validation[J]. J Ethnopharmacol, 2023, 317: 116852. doi:10.1016/j.jep.2023.116852 |
| [14] | 郑梓桐, 王美娟, 冯育林, 等. 基于蛋白质组学筛选关节炎相关生物标志物的研究进展[J]. 中草药, 2024, 55(18): 6383-92. |
| [15] | Hsiao Y, Zhang HJ, Li GX, et al. Analysis and visualization of quantitative proteomics data using FragPipe-analyst[J]. J Proteome Res, 2024, 23(10): 4303-15. doi:10.1021/acs.jproteome.4c00294 |
| [16] | Hou YW, Yang ZC, Ma JS, et al. Identification of PTPRC as a potential serum biomarker in rheumatoid arthritis using bioinfo-rmatics analysis and molecular docking[J]. Int Immunopharmacol, 2025, 152: 114393. doi:10.1016/j.intimp.2025.114393 |
| [17] | Hu HH, Tang LX, Li XM. Experimental research of effect of crude and processed Herba Siegesbeckiae on anti-inflammation and anti-rheumatism[J]. Zhongguo Zhong Yao Za Zhi, 2004, 29(6): 542-5. |
| [18] | Wang J, Cai Y, Wu Y. Antiinflammatory and analgesic activity of topical administration of Siegesbeckia pubescens [J]. Pak J Pharm Sci, 2008, 21(2): 89-91. |
| [19] | Liu JH, Qu B, Wang S, et al. Fengshi gutong capsules attenuates CIA-induced RA bone destruction in rats by targeting TNF‑α inhibition: Integration and experimental validation of network pharmacology and proteomics[J]. J Ethnopharmacol, 2025, 344: 119535. doi:10.1016/j.jep.2025.119535 |
| [20] | Suda Y, Ikuta K, Hayashi S, et al. Comparison of anti-inflammatory and anti-angiogenic effects of JAK inhibitors in IL-6 and TNF-α-stimulated fibroblast-like synoviocytes derived from patients with RA[J]. Sci Rep, 2025, 15(1): 9736. doi:10.1038/s41598-025-94894-2 |
| [21] | Peilin Z, Wenqiang W, Yongzhen L, et al. Inflammatory cytokines, metabolites, and rheumatoid arthritis[J]. Postgrad Med J, 2025, 101(1194): 313-20. doi:10.1093/postmj/qgae146 |
| [22] | Liu Y, Li L, Sun Y, et al. Dictamnus dasycarpus Turcz. Attenuates collagen-induced rheumatoid arthritis in DBA/1J mice through inhibiting IL-17 signaling pathway[J]. J Ethnopharmacol, 2025, 343: 119458. doi:10.1016/j.jep.2025.119458 |
| [23] | Hinrichs AC, Blokland SLM, Kruize AA, et al. CCL5 release by CCR9+ CD8 T cells: a potential contributor to immunopathology of primary sjögren's syndrome[J]. Front Immunol, 2022, 13: 887972. doi:10.3389/fimmu.2022.887972 |
| [24] | Alturaiki W, Alhamad A, Alturaiqy M, et al. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis[J]. Int J Rheum Dis, 2022, 25(9): 1013-9. doi:10.1111/1756-185x.14373 |
| [25] | Liang Q, He L, Wang JW, et al. Targeting IL-17 and its receptors: a feasible way for natural herbal medicines to modulate fibroblast-like synoviocytes in rheumatoid arthritis[J]. Biochem Pharmacol, 2024, 230: 116598. doi:10.1016/j.bcp.2024.116598 |
| [26] | Cacciapaglia F, Perniola S, Stano S, et al. Modulation of IL-6 receptor/STAT3 downstream signaling in rheumatoid arthritis patients[J]. Exp Mol Pathol, 2025, 141: 104951. doi:10.1016/j.yexmp.2024.104951 |
| [27] | Aubert A, Liu A, Kao M, et al. Granzyme B cleaves tenascin-C to release its C-terminal domain in rheumatoid arthritis[J]. JCI Insight, 2024, 9(23): e181935. doi:10.1172/jci.insight.181935 |
| [28] | Zhang Y, Cai X, Wang B, et al. Exploring the molecular mechanisms of the involvement of GZMB-Caspase-3-GSDME pathway in the progression of rheumatoid arthritis[J]. Mol Immunol, 2023, 161: 82-90. doi:10.1016/j.molimm.2023.07.013 |
| [29] | Jonsson AH, Zhang F, Dunlap G, et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue[J]. Sci Transl Med, 2022, 14(649): eabo0686. doi:10.1126/scitranslmed.abo0686 |
| [30] | Durham LE, Humby FC, Ng N, et al. Substantive similarities between synovial fluid and synovial tissue T cells in inflammatory arthritis via single-cell RNA and T cell receptor sequencing[J]. Arthritis Rheumatol, 2024, 76(11): 1594-601. doi:10.1002/art.42949 |
| [1] | Weiyi LI, Lu JIANG, Zongxing ZHANG, Dan CHEN, Zhuoma BAO, Li HUANG, Lin YUAN. Qianggu Kangshu Formula attenuates osteoclast differentiation in rheumatoid arthritis by inhibiting the HIF-1α/BNIP3 autophagy signaling pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1389-1396. |
| [2] | Zhi GAO, Ao WU, Zhongxiang HU, Peiyang SUN. Bioinformatics analysis of oxidative stress and immune infiltration in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(4): 862-870. |
| [3] | Zhoufang CAO, Yuan WANG, Mengna WANG, Yue SUN, Feifei LIU. LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(2): 371-378. |
| [4] | Maiyuan XU, Ni LI, Jiayi LI, Tao ZHANG, Liwen MA, Tao LIN, Haonan YU, Ning WU, Zunqiu WU, Li HUANG. Puerarin alleviates rheumatoid arthritis in rats by modulating TAK1-mediated TLR4/NF-κB signaling pathway [J]. Journal of Southern Medical University, 2025, 45(10): 2231-2239. |
| [5] | Junping ZHAN, Shuo HUANG, Qingliang MENG, Wei FAN, Huimin GU, Jiakang CUI, Huilian WANG. Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway [J]. Journal of Southern Medical University, 2025, 45(1): 35-42. |
| [6] | Rui YANG, Yuqin SHU, Huijie WEN, Xi CAI, Zhen WANG, Chen ZHANG, Yang XIANG, Hao WU. Pterocarya hupehensis Skan total flavones ameliorate rheumatoid arthritis in rats by suppressing formation of neutrophil extracellular traps [J]. Journal of Southern Medical University, 2024, 44(9): 1645-1652. |
| [7] | Shan XIANG, Zongxing ZHANG, Lu JIANG, Daozhong LIU, Weiyi LI, Zhuoma BAO, Rui TIAN, Dan CHENG, Lin YUAN. Tujia medicine Toddalia asiatica improves synovial pannus in rats with collagen-induced arthritis through the PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2024, 44(8): 1582-1588. |
| [8] | Lili CHEN, Tianyu WU, Ming ZHANG, Zixia DING, Yan ZHANG, Yiqing YANG, Jiaqian ZHENG, Xiaonan ZHANG. Identification of potential biomarkers and immunoregulatory mechanisms of rheumatoid arthritis based on multichip co-analysis of GEO database [J]. Journal of Southern Medical University, 2024, 44(6): 1098-1108. |
| [9] | Wei ZHOU, Jun NIE, Jia HU, Yizhi JIANG, Dafa ZHANG. Differential expressions of endoplasmic reticulum stress-associated genes in aortic dissection and their correlation with immune cell infiltration [J]. Journal of Southern Medical University, 2024, 44(5): 859-866. |
| [10] | Zhiwei ZUO, Qingliang MENG, Jiakang CUI, Kelei GUO, Hua BIAN. An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes [J]. Journal of Southern Medical University, 2024, 44(5): 920-929. |
| [11] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
| [12] | WANG Fanfan, LIU Jian, FANG Yanyan, WEN Jianting, HE Mingyu, HAN Qi, LI Xu. Traditional Chinese medicine may reduce the risk of readmission in patients with rheumatoid arthritis complicated with elevated platelet count: a matched cohort study [J]. Journal of Southern Medical University, 2023, 43(9): 1548-1557. |
| [13] | FAN Yifan, FENG Zhiwei, FAN Kuohai, YIN wei, SUN Na, SUN Panpan, SUN Yaogui, LI Hongquan. Procine recombinant NK-lysin inhibits hepatocellular carcinoma metastasis by downregulating FKBP3 and inhibiting oxidative phosphorylation and glycolysis: a proteomic analysis [J]. Journal of Southern Medical University, 2023, 43(7): 1116-1126. |
| [14] | ZONG Shiye, ZHOU Jing, CAI Weiwei, YU Yun, WANG Ying, SONG Yining, CHENG Jingwen, LI Yuhui, GAO Yi, WU Baihai, XIAN Hao, WEI Fang. Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway [J]. Journal of Southern Medical University, 2023, 43(4): 552-559. |
| [15] | LIU Tianyang, ZHOU Xueping, HUANG Chuanbing, ZHOU Lingling, CHEN Xi, WAN Lei, ZONG Ruikai, FAN Haixia, SUN Yue, YU Zhichao, TANG Zhongfu, XU Gengrui, ZHOU Ziyi. Mechanism of Qingluo Tongbi Formula for regulating immune-bone erosion in rheumatoid arthritis [J]. Journal of Southern Medical University, 2023, 43(10): 1706-1714. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||