Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 810-817.doi: 10.12122/j.issn.1673-4254.2024.05.02
• Basic Research • Previous Articles Next Articles
Yiming SUN1,2(), Rong ZHANG3, Ying MENG3, Lei ZHU3, Mingqiang LI3, Zhe LIU1,2(
)
Received:
2024-01-10
Online:
2024-05-20
Published:
2024-06-06
Contact:
Zhe LIU
E-mail:15951977608@163.com;117915493@qq.com
Supported by:
Yiming SUN, Rong ZHANG, Ying MENG, Lei ZHU, Mingqiang LI, Zhe LIU. Coenzyme Q10 alleviates depression-like behaviors in mice with chronic restraint stress by down-regulating the pyroptosis signaling pathway[J]. Journal of Southern Medical University, 2024, 44(5): 810-817.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.02
Fig.2 Coenzyme Q10 alleviates the loss of astrocytes in the hippocampus of mice with CRS (Original magnification: ×200). A, B: Immunohistochemistry and positive rate of GFAP in the hippocampus. C, D: Results of Western blotting for detecting GFAP protein expression. *P<0.05 vs CON, #P<0.05 vs CRS.
Fig. 3 Coenzyme Q10 reduces the loss of synaptic spines in the hippocampus of CRS mice (Golgi staining, scale bar=10 μm). ***P <0.001 vs CON; #P <0.05, ##P <0.01 vs CRS.
Fig.4 Coenzyme Q10 reduces expressions of pyroptosis-related proteins in the hippocampus of CRS mice detected by Western blotting. *P<0.05, **P<0.01 vs CON; #P<0.05, ##P<0.01 vs CRS.
Fig.5 Coenzyme Q10 reduces colabeling of caspase-1 p10 and hippocampal neurons in CRS mice. A: Immunofluorescence staining of the hippocampal neurons. B: Number of colocalization of neurons and caspase-1 p10. ***P<0.001 vs CON; ###P<0.001 vs CRS.
1 | Davidson RJ, Pizzagalli D, Nitschke JB, et al. Depression: perspectives from affective neuroscience[J]. Annu Rev Psychol, 2002, 53: 545-74. |
2 | Davidson JRT. Major depressive disorder treatment guidelines in America and Europe[J]. J Clin Psychiatry, 2010, 71(): e04. |
3 | O’Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: a review of fine neuroanatomical evidence in humans[J]. Glia, 2021, 69(9): 2077-99. |
4 | O’Connor S, Agius M. A systematic review of structural and functional MRI differences between psychotic and nonpsychotic depression[J]. Psychiatr Danub, 2015, 27(): S235-9. |
5 | Hertz L, Rothman DL, Li BM, et al. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift[J]. Front Behav Neurosci, 2015, 9: 25. |
6 | Domschke K. Clinical and molecular genetics of psychotic depression[J]. Schizophr Bull, 2013, 39(4): 766-75. |
7 | Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. |
8 | Rothschild AJ. Challenges in the treatment of major depressive disorder with psychotic features[J]. Schizophr Bull, 2013, 39(4): 787-96. |
9 | Parker G, Roy K, Hadzi-Pavlovic D, et al. Psychotic (delusional) depression: a meta-analysis of physical treatments[J]. J Affect Disord, 1992, 24(1): 17-24. |
10 | Sonmez AI, Camsari DD, Nandakumar AL, et al. Accelerated TMS for Depression: a systematic review and meta-analysis[J]. Psychiatry Res, 2019, 273: 770-81. |
11 | Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781. |
12 | Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9): 673-84. |
13 | 祁 宏, 王 洋, 石艳香. 细胞凋亡、坏死和焦亡信号网络关键节点的识别[J]. 河南师范大学学报: 自然科学版, 2024, 52(1): 51-9. |
14 | Li SS, Sun YM, Song MM, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression[J]. JCI Insight, 2021, 6(23): e146852. |
15 | Maes M, Mihaylova I, Kubera M, et al. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness[J]. Neuro Endocrinol Lett, 2009, 30(4): 462-9. |
16 | Lesser GJ, Case D, Stark N, et al. A randomized, double-blind, placebo-controlled study of oral coenzyme Q10 to relieve self-reported treatment-related fatigue in newly diagnosed patients with breast cancer[J]. J Support Oncol, 2013, 11(1): 31-42. |
17 | Chiba SC, Numakawa T, Ninomiya M, et al. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012, 39(1): 112-9. |
18 | Abuelezz SA, Hendawy N, Magdy Y. Targeting oxidative stress, cytokines and serotonin interactions via indoleamine 2, 3 dioxygenase by coenzyme Q10: role in suppressing depressive like behavior in rats[J]. J Neuroimmune Pharmacol, 2017, 12(2): 277-91. |
19 | Zhang Y, Liu L, Liu YZ, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation[J]. Int J Neuropsychopharmacol, 2015, 18(8): pyv006. |
20 | Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019, 25(3): 227-40. |
21 | Sun MQ, You HL, Hu XX, et al. Microglia-astrocyte interaction in neural development and neural pathogenesis[J]. Cells, 2023, 12(15): 1942. |
22 | Sacristán C. Microglia and astrocyte crosstalk in immunity[J]. Trends Immunol, 2020, 41(9): 747-8. |
23 | 李爱萍, 赵慧娟, 贾梦阳, 等. 辅酶Q10在代谢综合征和心血管疾病中的研究进展[J]. 中国医药科学, 2022, 12(9): 54-7. DOI: 10.3969/j.issn.2095-0616.2022.09.015 |
24 | Yang LC, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases[J]. J Neurochem, 2009, 109(5): 1427-39. |
25 | Erol B, Bozlu M, Hanci V, et al. Coenzyme Q10 treatment reduces lipid peroxidation, inducible and endothelial nitric oxide synthases, and germ cell-specific apoptosis in a rat model of testicular ischemia/reperfusion injury[J]. Fertil Steril, 2010, 93(1): 280-2. |
26 | Attia HN, Maklad YA. Neuroprotective effects of coenzyme Q10 on paraquat-induced Parkinson's disease in experimental animals[J]. Behav Pharmacol, 2018, 29(1): 79-86. |
27 | Forester BP, Zuo CS, Ravichandran C, et al. Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression[J]. J Geriatr Psychiatry Neurol, 2012, 25(1): 43-50. |
28 | Nasoohi S, Simani L, Khodagholi F, et al. Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin[J]. Nutr Neurosci, 2019, 22(4): 264-72. |
29 | Aboul-Fotouh S. Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats[J]. Pharmacol Biochem Behav, 2013, 104: 105-12. |
30 | Alcocer-Gómez E, Sánchez-Alcázar JA, Cordero MD. Coenzyme Q10 regulates serotonin levels and depressive symptoms in fibromyalgia patients: results of a small clinical trial[J]. J Clin Psychopharmacol, 2014, 34(2): 277-8. |
31 | Heimfarth L, Passos FRS, Monteiro BS, et al. Serum glial fibrillary acidic protein is a body fluid biomarker: a valuable prognostic for neurological disease-A systematic review[J]. Int Immunopharmacol, 2022, 107: 108624. |
32 | Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression[J]. CNS Neurol Disord Drug Targets, 2007, 6(3): 219-33. |
33 | Salehpour F, Farajdokht F, Cassano P, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis[J]. Brain Res Bull, 2019, 144: 213-22. |
34 | Abuelezz SA, Hendawy N, Magdy Y. The potential benefit of combined versus monotherapy of coenzyme Q10 and fluoxetine on depressive-like behaviors and intermediates coupled to Gsk-3β in rats[J]. Toxicol Appl Pharmacol, 2018, 340: 39-48. |
35 | Li DX, Wang CN, Wang Y, et al. NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice[J]. Behav Brain Res, 2020, 391: 112684. |
36 | Li YJ, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. J Neuroinflammation, 2021, 18(1): 1-23. |
37 | Yang F, Zhu W, Cai XF, et al. Minocycline alleviates NLRP3 inflammasome-dependent pyroptosis in monosodium glutamate-induced depressive rats[J]. Biochem Biophys Res Commun, 2020, 526(3): 553-9. |
38 | Younus I, Reddy DS. A resurging boom in new drugs for epilepsy and brain disorders[J]. Expert Rev Clin Pharmacol, 2018, 11(1): 27-45. |
[1] | Haiyi ZHOU, Siyi HE, Ruifang HAN, Yongge GUAN, Lijuan DONG, Yang SONG. Moxibustion promotes endometrial repair in rats with thin endometrium by inhibiting the NLRP3/pyroptosis axis via upregulating miR-223-3p [J]. Journal of Southern Medical University, 2025, 45(7): 1380-1388. |
[2] | Xia LV, Rong XIAO. Materialistic values and their association with depression in medical postgraduates: materialism leads to higher risk of depression [J]. Journal of Southern Medical University, 2025, 45(6): 1220-1225. |
[3] | Fenlan BIAN, Shiyao NI, Peng ZHAO, Maonanxing QI, Bi TANG, Hongju WANG, Pinfang KANG, Jinjun LIU. Asiaticoside alleviates myocardial ischemia-reperfusion injury in rats by inhibiting NLRP3 inflammasome-mediated pyroptosis [J]. Journal of Southern Medical University, 2025, 45(5): 977-985. |
[4] | Yalei SUN, Meng LUO, Changsheng GUO, Jing GAO, Kaiqi SU, Lidian CHEN, Xiaodong FENG. Amentoflavone alleviates acute lung injury in mice by inhibiting cell pyroptosis [J]. Journal of Southern Medical University, 2025, 45(4): 692-701. |
[5] | Meimei CHEN, Yang WANG, Huangwei LEI, Fei ZHANG, Ruina HUANG, Zhaoyang YANG. Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics [J]. Journal of Southern Medical University, 2025, 45(4): 711-717. |
[6] | Zhengwang ZHU, Linlin WANG, Jinghan ZHAO, Ruixue MA, Yuchun YU, Qingchun CAI, Bing WANG, Pingsheng ZHU, Mingsan MIAO. Tuihuang Mixture improves α‑naphthylisothiocyanate-induced cholestasis in rats by inhibiting NLRP3 inflammasomes via regulating farnesoid X receptor [J]. Journal of Southern Medical University, 2025, 45(4): 718-724. |
[7] | Zhengtao GAO, Pingyan LIN, Bingcan ZHOU, Mingheng CHEN, Erqi LIU, Tianxiang LEI, Huixin NI, Haixin LIU, Yao LIN, Qian XU. Hypericin ameliorates stress-induced depressive-like behaviors in mice by modulating the CN-NFAT calcium signaling pathway in microglia [J]. Journal of Southern Medical University, 2025, 45(3): 506-513. |
[8] | Ju HUANG, Lixia YIN, Minzhu NIU, Zhijun GENG, Lugen ZUO, Jing LI, Jianguo HU. Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells [J]. Journal of Southern Medical University, 2025, 45(2): 261-268. |
[9] | Ying LIU, Borui LI, Yongcai LI, Lubo CHANG, Jiao WANG, Lin YANG, Yonggang YAN, Kai QV, Jiping LIU, Gang ZHANG, Xia SHEN. Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora [J]. Journal of Southern Medical University, 2025, 45(2): 347-358. |
[10] | Mingzi OUYANG, Jiaqi CUI, Hui WANG, Zheng LIANG, Dajin PI, Liguo CHEN, Qianjun CHEN, Yingchao WU. Kaixinsan alleviates adriamycin-induced depression-like behaviors in mice by reducing ferroptosis in the prefrontal cortex [J]. Journal of Southern Medical University, 2024, 44(8): 1441-1449. |
[11] | Yeming ZHANG, Yuanxiang ZHANG, Xuebin SHEN, Guodong WANG, Lei ZHU. MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling via targeting rab10 in a rat model of depression [J]. Journal of Southern Medical University, 2024, 44(7): 1315-1326. |
[12] | XIONG Yifan, LIANG Xiaoshan, LIANG Xiaotao, LI Weipeng, QIAN Yixiao, XIE Wei. Saikosaponin a alleviates pentylenetetrazol-induced acute epileptic seizures in mouse models of depression by suppressing microglia activation-mediated inflammation [J]. Journal of Southern Medical University, 2024, 44(3): 515-522. |
[13] | FANG Shangping, SUN Renke, SU Hui, ZHAI Kecheng, XIANG Yu, GAO Yangmengna, GUO Wenjun. Chlorogenic acid alleviates acute kidney injury in septic mice by inhibiting NLRP3 inflammasomes and the caspase-1 canonical pyroptosis pathway [J]. Journal of Southern Medical University, 2024, 44(2): 317-323. |
[14] | LI Xinyi, LIU Yujie, DENG Kechong, HU Yikui. Modulating gut microbiota improves neurological function and depressive symptoms in rats with post-stroke depression [J]. Journal of Southern Medical University, 2024, 44(2): 405-410. |
[15] | Dongbo LIU, Zewen CHEN, Yun WANG, Xinpeng LI, Pengyu ZHAO, Haoxian ZHENG. Neuronal plasticity changes in the central amygdala and prelimbic cortex network in mice with chronic unpredictable mild stress-induced depression [J]. Journal of Southern Medical University, 2024, 44(11): 2082-2091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||