Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (11): 2082-2091.doi: 10.12122/j.issn.1673-4254.2024.11.04
Dongbo LIU1(), Zewen CHEN2, Yun WANG2, Xinpeng LI2, Pengyu ZHAO2, Haoxian ZHENG2
Received:
2024-08-07
Online:
2024-11-20
Published:
2024-11-29
Contact:
Dongbo LIU
E-mail:liudongbo@bbmu.edu.cn
Dongbo LIU, Zewen CHEN, Yun WANG, Xinpeng LI, Pengyu ZHAO, Haoxian ZHENG. Neuronal plasticity changes in the central amygdala and prelimbic cortex network in mice with chronic unpredictable mild stress-induced depression[J]. Journal of Southern Medical University, 2024, 44(11): 2082-2091.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.11.04
Fig.2 Effects of CUMS performance of the mice in open field test.A: Total distance moved.B: Number of crossing grid.C: Number of entries into the central area.D: Time spent in the central area.EPercentage of distance traveled in the central area.F Percentage of time spent in the central area. G Number of rearing. **P<0.01 vs control group.
Fig.3 Effects of CUMS on performance of the mice in forced swimming test. A: Struggling time. B: Swimming time. C: Immobility time. D: Climbing time. **P<0.01 vs control group.
Fig.4 Performance of CUMS and control mice for localization in Morris water maze test. A: Escape latency. B: Path length. C: Average swimming velocity. *P<0.05, **P<0.01, ***P<0.001 vs control group.
Fig.5 Performance of CUMS and control mice for spatial exploration in Morris water maze test. A: Swimming time. B: Percentage of distance within the target quadrant. C: First entry latency into target zone. TQ: Target quadrant. AQ: Adjacent quadrant. OQ: Opposite quadrant. IQ: Irrelevant quadrant. *P<0.05, **P<0.01 vs control group.
Fig.6 Changes of action potential firing patterns of glutamatergic and GABAergic neurons in CeA region of CUMS mice. A: Waveforms of sequential action potentials of glutamatergic neurons in CUMS mice (solid line) and control mice (dotted line). B-D: Effects of CUMS on electrophysiological properties of glutamatergic neurons. E: Waveforms of sequential action potentials of GABAergic neurons in CUMS mice (solid line) and control mice (dotted line). F-H: Effects of CUMS on electrophysiological properties of GABAergic neurons. Vts: Threshold potential; Vr: Resting potential; ARP: Absolute refractory period; ISI: Inter-spike interval. *P<0.05, **P<0.01, ***P<0.001 vs control group.
Fig.7 Changes of action potential firing patterns of glutamatergic and GABAergic neurons in PrL region of CUMS mice. A: Waveforms of sequential action potentials of glutamatergic neurons in CUMS mice (solid line) and control mice (dotted line). B-D: Effects of CUMS on electrophysiological properties of glutamatergic neurons. E: Waveforms of sequential action potentials of GABAergic neurons in CUMS mice (solid line) and control mice (dotted line). F-H: Effects of CUMS on electrophysiological properties of GABAergic neurons. *P<0.05, **P<0.01, ***P<0.001 vs control group.
1 | Hu P, Wang Y, Qi XH, et al. SIRT1 in the BNST modulates chronic stress-induced anxiety of male mice via FKBP5 and corticotropin-releasing factor signaling[J]. Mol Psychiatry, 2023, 28(12): 5101-17. |
2 | Siopi E, Galerne M, Rivagorda M, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice[J]. Mol Psychiatry, 2023, 28(7): 3002-12. |
3 | 崔维维, 龚莉雅, 陈纯辉, 等. 抑郁样小鼠额叶体积的减少与脑源性神经营养因子表达的下降有关[J]. 南方医科大学学报, 2023, 43(6): 1041-6. DOI: 10.12122/j.issn.1673-4254.2023.06.22 |
4 | Clement A, Madsen MJ, Kastaniegaard K, et al. Chronic stress induces hippocampal mitochondrial damage in APPPS1 model mice and wildtype littermates[J]. J Alzheimers Dis, 2022, 87(1): 259-72. |
5 | Aten S, Du YX, Taylor O, et al. Chronic stress impairs the structure and function of astrocyte networks in an animal model of depression[J]. Neurochem Res, 2023, 48(4): 1191-210. |
6 | Zhuang LP, Gao WJ, Chen YB, et al. LHPP in glutamatergic neurons of the ventral hippocampus mediates depression-like behavior by dephosphorylating CaMKIIα and ERK[J]. Biol Psychiatry, 2024, 95(5): 389-402. |
7 | Lee J, Yoon KJ, Park P, et al. Neur1 and Neur2 are required for hippocampus-dependent spatial memory and synaptic plasticity[J]. Hippocampus, 2020, 30(11): 1158-66. |
8 | Capitano F, Camon J, Ferretti V, et al. MicroRNAs modulate spatial memory in the hippocampus and in the ventral Striatum in a region-specific manner[J]. Mol Neurobiol, 2016, 53(7): 4618-30. |
9 | Ireton KE, Xing XM, Kim K, et al. Regulation of the Ca2+ channel CaV1.2 supports spatial memory and its flexibility and LTD[J]. J Neurosci, 2023, 43(30): 5559-73. |
10 | Barkus C, McHugh SB, Sprengel R, et al. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion[J]. Eur J Pharmacol, 2010, 626(1): 49-56. |
11 | Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, et al. Theta oscillations through hippocampal/prefrontal pathway: importance in cognitive performances[J]. Brain Connect, 2020, 10(4): 157-69. |
12 | Jiang ZJ, Zhu ZM, Zhao MY, et al. H3K9me2 regulation of BDNF expression in the hippocampus and medial prefrontal cortex is involved in the depressive-like phenotype induced by maternal separation in male rats[J]. Psychopharmacology, 2021, 238(10): 2801-13. |
13 | Li JJ, Pang YY, Du YH, et al. Lack of interferon regulatory factor 3 leads to anxiety/depression-like behaviors through disrupting the balance of neuronal excitation and inhibition in mice[J]. Genes Dis, 2023, 10(3): 1062-74. |
14 | Zhang H, Zhen YF, Yu SJ, et al. Working memory for spatial sequences: developmental and evolutionary factors in encoding ordinal and relational structures[J]. J Neurosci, 2022, 42(5): 850-64. |
15 | Ding XB, Lin YW, Chen C, et al. DNMT1 mediates chronic pain-related depression by inhibiting GABAergic neuronal activation in the central amygdala[J]. Biol Psychiatry, 2023, 94(8): 672-84. |
16 | Xu LP, Liu Y, Long JY, et al. Loss of spines in the prelimbic cortex is detrimental to working memory in mice with early-life adversity[J]. Mol Psychiatry, 2023, 28(8): 3444-58. |
17 | Petrus E, Dembling S, Usdin T, et al. Circuit-specific plasticity of callosal inputs underlies cortical takeover[J]. J Neurosci, 2020, 40(40): 7714-23. |
18 | Zhang GJ, Gao ZL, Guan SD, et al. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs[J]. Mol Brain, 2013, 6: 2. |
19 | Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex[J]. Nat Rev Neurosci, 2008, 9(7): 557-68. |
20 | Gizewski ER, Gasser T, de Greiff A, et al. Cross-modal plasticity for sensory and motor activation patterns in blind subjects[J]. Neuroimage, 2003, 19(3): 968-75. |
21 | Larkum ME, Waters J, Sakmann B, et al. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons[J]. J Neurosci, 2007, 27(34): 8999-9008. |
22 | Samad N, Rao T, Rehman MHU, et al. Inhibitory effects of selenium on arsenic-induced anxiety-/ depression-like behavior and memory impairment[J]. Biol Trace Elem Res, 2022, 200(2): 689-98. |
23 | 时萌萌, 张 圆, 李 菁, 等. 慢性束缚应激对小鼠海马星形胶质细胞表型转换及抑郁样行为的影响[J]. 解剖学报, 2023, 54(1): 42-9. |
24 | Cai YJ, Ji Y, Liu YX, et al. Microglial circ-UBE2K exacerbates depression by regulating parental gene UBE2K via targeting HNRNPU[J]. Theranostics, 2024, 14(10): 4058-75. |
25 | Kim J, Kang S, Choi TY, et al. Metabotropic glutamate receptor 5 in amygdala target neurons regulates susceptibility to chronic social stress[J]. Biol Psychiatry, 2022, 92(2): 104-15. |
26 | Papp M, Gruca P, Lason M, et al. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response[J]. J Psychopharmacol, 2021, 35(10): 1253-64. |
27 | Zan GY, Sun X, Wang YJ, et al. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress[J]. Acta Pharmacol Sin, 2022, 43(3): 577-87. |
28 | Folschweiller S, Sauer JF. Behavioral state-dependent modulation of prefrontal cortex activity by respiration[J]. J Neurosci, 2023, 43(26): 4795-807. |
29 | Li ZY, Li JX, Wei YX, et al. Anterior and posterior basolateral amygdala projections of cell type-specific D1-expressing neurons from the medial prefrontal cortex differentially control alcohol-seeking behavior[J]. Biol Psychiatry, 2024, 95(10): 963-73. |
30 | Wang XL, Miao C, Su YF, et al. MAD2B blunts chronic unpredictable stress and corticosterone stimulation-induced depression-like behaviors in mice[J]. Int J Neuropsychopharmacol, 2023, 26(2): 137-48. |
31 | Ge PY, Qu SY, Ni SJ, et al. Berberine ameliorates depression-like behavior in CUMS mice by activating TPH1 and inhibiting IDO1-associated with tryptophan metabolism[J]. Phytother Res, 2023, 37(1): 342-57. |
32 | Hong C, Wang Z, Zheng SL, et al. Metrnl regulates cognitive dysfunction and hippocampal BDNF levels in D-galactose-induced aging mice[J]. Acta Pharmacol Sin, 2023, 44(4): 741-51. |
33 | Simonetti M, Paldy E, Njoo C, et al. The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology[J]. Mol Psychiatry, 2021, 26(4): 1376-98. |
34 | Hallock HL, 4thQuillian HM, Maynard KR, et al. Molecularly defined hippocampal inputs regulate population dynamics in the prelimbic cortex to suppress context fear memory retrieval[J]. Biol Psychiatry, 2020, 88(7): 554-65. |
35 | Mayo LM, Asratian A, Lindé J, et al. Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice[J]. Mol Psychiatry, 2020, 25(5): 993-1005. |
36 | Elizabeth A, Adegbuyi A, Olusegun A, et al. Morin hydrate attenuates chronic stress-induced memory impairment and degeneration of hippocampal subfields in mice: the role of oxidative, nitrergic and neuroinflammatory pathways[J]. Metab Brain Dis, 2020, 35(7): 1145-56. |
37 | Liu L, Zhang R, Chen C, et al. The effect of Banxia-houpo Decoction on CUMS-induced depression by promoting M2 microglia polarization via TrkA/Akt signalling[J]. J Cell Mol Med, 2023, 27(21): 3339-53. |
38 | Schmeltzer SN, Vollmer LL, Rush JE, et al. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats[J]. Stress, 2015, 18(2): 244-53. |
39 | Chauveau F, De Job E, Poly-Thomasson B, et al. Procognitive impact of ciproxifan (a histaminergic H3 receptor antagonist) on contextual memory retrieval after acute stress[J]. CNS Neurosci Ther, 2019, 25(8): 832-41. |
40 | Leem YH, Park JS, Chang H, et al. Exercise prevents memory consolidation defects via enhancing prolactin responsiveness of CA1 neurons in mice under chronic stress[J]. Mol Neurobiol, 2019, 56(9): 6609-25. |
41 | Nakatani Y, Ishikawa K, Aoki Y, et al. Inhibitory effect of atomoxetine on Nav1.2 voltage-gated sodium channel currents[J]. Pharmacol Rep, 2023, 75(3): 746-52. |
42 | Liu JJ, Eyring KW, König GM, et al. Oxytocin-modulated ion channel ensemble controls depolarization, integration and burst firing in CA2 pyramidal neurons[J]. J Neurosci, 2022, 42(41): 7707-20. |
43 | Routh BN, Brager DH, Johnston D. Ionic and morphological contributions to the variable gain of membrane responses in layer 2/3 pyramidal neurons of mouse primary visual cortex[J]. J Neurophysiol, 2022, 128(4): 1040-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||