Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (8): 1718-1731.doi: 10.12122/j.issn.1673-4254.2025.08.16
Zhaojun ZHANG1(), Qiong WU1, Miaomiao XIE1, Ruyin YE1, Chenchen GENG1, Jiwen SHI1, Qingling YANG1, Wenrui WANG1, Yurong SHI2(
)
Received:
2024-12-24
Online:
2025-08-20
Published:
2025-09-05
Contact:
Yurong SHI
E-mail:zzj17318530948@163.com;shiyr@126.com
Zhaojun ZHANG, Qiong WU, Miaomiao XIE, Ruyin YE, Chenchen GENG, Jiwen SHI, Qingling YANG, Wenrui WANG, Yurong SHI. Layered double hydroxide-loaded si-NEAT1 regulates paclitaxel resistance and tumor-associated macrophage polarization in breast cancer by targeting miR-133b/PD-L1[J]. Journal of Southern Medical University, 2025, 45(8): 1718-1731.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.08.16
Gene | Forward primer | Reverse primer |
---|---|---|
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
NEAT1 | CTTCCTCCCTTTAACTTATCCATTCAC | CTCTTCCTCCACCATTACCAACAATAC |
miR-133b | TCCCCTTCAACCAGCTAA | Universal primer |
PD-L1 | GTAAGACCACCACCACCAATTC | AGTTGTTGTGTTGATTCTCAGTGTG |
U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT |
Arg-1 | GGACCTGCCCTTTGCTGACATC | TCTTCTTGACTTCTGCCACCTTGC |
CD163 | ACAATGAAGATGCTGGCGTGAC | ACAATGAAGATGCTGGCGTGAC |
IL-10 | ACCAAGACCCAGACATCAAGGC | AGGCATTCTTCACCTGCTCCAC |
CD68 | CCCACCTGCTTCTCTCATTCCC | TTGTACTCCACCGCCATGTAGC |
Tab.1 PCR primer sequences
Gene | Forward primer | Reverse primer |
---|---|---|
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
NEAT1 | CTTCCTCCCTTTAACTTATCCATTCAC | CTCTTCCTCCACCATTACCAACAATAC |
miR-133b | TCCCCTTCAACCAGCTAA | Universal primer |
PD-L1 | GTAAGACCACCACCACCAATTC | AGTTGTTGTGTTGATTCTCAGTGTG |
U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT |
Arg-1 | GGACCTGCCCTTTGCTGACATC | TCTTCTTGACTTCTGCCACCTTGC |
CD163 | ACAATGAAGATGCTGGCGTGAC | ACAATGAAGATGCTGGCGTGAC |
IL-10 | ACCAAGACCCAGACATCAAGGC | AGGCATTCTTCACCTGCTCCAC |
CD68 | CCCACCTGCTTCTCTCATTCCC | TTGTACTCCACCGCCATGTAGC |
Fig.1 LncRNA NEAT1 regulates paclitaxel resistance of breast cancer cells. A, B: Western blotting and immunofluorescence detection of expression of drug resistance-related proteins in resistant breast cancer cells (scale bar=50 μm). C: qRT-PCR technology for detecting the expression of NEAT1. D: Western blotting for detecting drug resistance of the cells. E: Flow cytometry for analyzing apoptosis rate of the resistant breast cancer cells. F, G: Scratch and Transwell assays for assessing the migration and invasion capabilities of resistant cells (scale bar=200 μm). Scratch and Transwell assays for assessing migration and invasion capabilities of resistant breast cancer cells. *P<0.05, **P<0.01, ***P<0.001.
Fig.2 LncRNA NEAT1 affects drug resistance in breast cancer cells by regulating miR-133b. A, B: qRT-PCR for detecting the expression of miR-133b. C: Western blotting for detecting expressions of drug resistance proteins. D: Immunofluorescence for detecting the expression of resistance proteins. E, F: Scratch and Transwell assays for assessing the migration and invasiveness of resistant cells. G: Flow cytometry for detecting apoptosis rate of resistant cells. *P<0.05, **P<0.01, ***P<0.001.
Fig.3 LncRNA NEAT1 regulates miR-133b to target PD-L1 and affect paclitaxel resistance in breast cancer cells. A, B: qRT-PCR for detecting the expression of PD-L1. C: Bioinformatics analysis reveals a regulatory relationship between miR-133b and PD-L1. D, E: Western blotting for detecting the expression of PD-L1. F: Western blotting for detecting the expressions of MRP, BCRP, and PD-L1 in drug-resistant breast cancer cells. *P<0.05, **P<0.01, ***P<0.001.
Fig.4 LncRNA NEAT1 regulates miR-133b to target PD-L1 and affect paclitaxel resistance in breast cancer cells. A: qRT-PCR for detecting the expression of PD-L1. B: Immunofluorescence for detecting the expression of BCRP in resistant cells (scale bar=50 μm). C, D: Scratch and Transwell assays for assessing migration and invasion capabilities of resistant cells (scale bar=200 μm). E: Flow cytometry for detecting apoptosis rate of the resistant cells. *P<0.05, **P<0.01, ***P<0.001.
Fig.5 Resistance cell supernatant can regulate the polarization of tumor-associated macrophages. A: Morphology of Thp-1 and M0-type macrophages (scale bar=200 μm ). B: qRT-PCR for detecting the expression of CD68. C, D: qRT-PCR for detecting the expression of M2 macrophage polarization markers Arg-1, CD163, and IL-10. E: Immunofluorescence staining for detecting M2 polarization markers CD163 and CD206 in the macrophages (scale bar=50 μm). F: Timer2.0 website predicts that the expression of NEAT1 is positively correlated with macrophage infiltration. *P<0.05, **P<0.01, ***P<0.001.
Fig.6 LncRNA NEAT1 regulates polarization of tumor-associated macrophages in breast cancer. A, D: qRT-PCR for detecting the expressions of NEAT1, miR-133b, and PD-L1, respectively. B, C: qRT-PCR and Immunofluorescence for detecting M2 macrophage polarization markers (scale bar=50 μm). E: Western blotting for detecting the expression of PD-L1 in the macrophages. *P<0.05, **P<0.01, ***P<0.001.
Fig.7 Construction of LDH Nanoparticles Loaded with si-NEAT1. A: Synthesis and loading of LDH. B: Agarose gel electrophoresis to determine the optimal loading ratio of LDH with si-NEAT1. C, D: Malvern particle size analysis for assessing particle size distribution and zeta potential of LDH and LDH@si-NEAT1. E: Transmission electron microscopy images of LDH and LDH@si-NEAT1. F, G: X-ray diffraction and UV-Vis spectra of LDH and LDH@si-NEAT1.
Fig.8 LDH@si-NEAT1 characterization experiments. A: Uptake experiment of LDH@si-NEAT1 (Original magnification: ×200). B: Confocal microscopy to detect lysosomal escape of LDH@si-NEAT1 (×200). C: Acridine orange staining to test lysosomal membrane permeability (×600).
Fig.9 LDH@si-NEAT1 regulate paclitaxel resistance in breast cancer cells. A, B: Scratch and Transwell assays to assess the migration and invasion capabilities of drug-resistant cells. C: Flow cytometry for detecting apoptosis rate of drug-resistant cells. D: qRT-PCR for detecting expressions of miR-133b and PD-L1, respectively. E: Western blotting for detecting expressions of drug resistance proteins and PD-L1. *P<0.05, ***P<0.001.
Fig.10 LDH@si-NEAT1 regulate M2 polarization state. A: Immunofluorescence staining for detecting expressions of drug resistance proteins (scale bar=50 μm). B, C: qRT-PCR and immunofluorescence staining for detecting M2 macrophage polarization markers (scale bar=50 μm). D: qRT-PCR of the expressions of miR-133b and PD-L1. E: Western blotting of the expression of PD-L1 in macrophages. *P<0.05, **P<0.01, ***P<0.001.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. doi:10.3322/caac.21834 |
[2] | 石英香, 王 婧, 石玉荣, 等. 乳腺癌紫杉醇耐药机制的研究进展[J]. 齐齐哈尔医学院学报, 2022, 43(6): 557-61. |
[3] | Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel's mechanistic and clinical effects on breast cancer[J]. Biomolecules, 2019, 9(12): 789. doi:10.3390/biom9120789 |
[4] | Ghafouri-Fard S, Taheri M. Nuclear enriched abundant transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis[J]. Biomed Pharmacother, 2019, 111: 51-9. doi:10.1016/j.biopha.2018.12.070 |
[5] | Wang C, Duan YJ, Duan G, et al. Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle LncRNA NEAT1-mediated liquid-liquid phase separation[J]. Mol Cell, 2020, 79(3): 443-58.e7. doi:10.1016/j.molcel.2020.06.019 |
[6] | Wei XB, Jiang WQ, Zeng JH, et al. Exosome-derived lncRNA NEAT1 exacerbates sepsis-associated encephalopathy by promoting ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis[J]. Mol Neurobiol, 2022, 59(3): 1954-69. doi:10.1007/s12035-022-02738-1 |
[7] | Luo X, Wei QL, Jiang XY, et al. CSTF3 contributes to platinum resistance in ovarian cancer through alternative polyadenylation of lncRNA NEAT1 and generating the short isoform NEAT1_1[J]. Cell Death Dis, 2024, 15(6): 432. doi:10.1038/s41419-024-06816-1 |
[8] | Puccio N, Manzotti G, Mereu E, et al. Combinatorial strategies targeting NEAT1 and AURKA as new potential therapeutic options for multiple myeloma[J]. Haematologica, 2024, 109(12): 4040-55. |
[9] | Li MY, Yang YH, Xiong LT, et al. Metabolism, metabolites, and macrophages in cancer[J]. J Hematol Oncol, 2023, 16(1): 80. doi:10.1186/s13045-023-01478-6 |
[10] | Borisenko GG, Matsura T, Liu SX, et al. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells: existence of a threshold[J]. Arch Biochem Biophys, 2003, 413(1): 41-52. doi:10.1016/s0003-9861(03)00083-3 |
[11] | Liu DL, Wei YH, Liu YD, et al. The long non-coding RNA NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization and A1 astrocyte activation[J]. Mol Neurobiol, 2021, 58(9): 4506-19. doi:10.1007/s12035-021-02405-x |
[12] | 彭 威, 徐 旸, 王文锐. 层状双氢氧化物作为基因药物递送载体的研究进展[J]. 中国医药工业杂志, 2020, 51(10): 1243-53. doi:10.16522/j.cnki.cjph.2020.10.003 |
[13] | Li L, Soyhan I, Warszawik E, et al. Layered double hydroxides: recent progress and promising perspectives toward biomedical applications[J]. Adv Sci (Weinh), 2024, 11(20): e2306035. doi:10.1002/advs.202306035 |
[14] | 徐惠敏, 史竞彤, 孙轶华. 肿瘤相关巨噬细胞的极化方式及其对乳腺癌进展的影响[J]. 现代肿瘤医学, 2021, 29(22): 4049-54. doi:10.3969/j.issn.1672-4992.2021.22.037 |
[15] | Mou SJ, Yang PF, Liu YP, et al. BCLAF1 promotes cell proliferation, invasion and drug-resistance though targeting lncRNA NEAT1 in hepatocellular carcinoma[J]. Life Sci, 2020, 242: 117177. doi:10.1016/j.lfs.2019.117177 |
[16] | Wei XY, Tao S, Mao HL, et al. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b[J]. Gene, 2023, 860: 147230. doi:10.1016/j.gene.2023.147230 |
[17] | Long F, Li X, Pan JY, et al. The role of lncRNA NEAT1 in human cancer chemoresistance[J]. Cancer Cell Int, 2024, 24(1): 236. doi:10.1186/s12935-024-03426-x |
[18] | Wang JY, Zhang JH, Liu H, et al. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer[J]. Cancer Commun (Lond), 2024, 44(4): 469-90. doi:10.1002/cac2.12534 |
[19] | Zhang SJ, Kim EJ, Huang JF, et al. NEAT1 repression by MED12 creates chemosensitivity in p53 wild-type breast cancer cells[J]. FEBS J, 2024, 291(9): 1909-24. doi:10.1111/febs.17097 |
[20] | Zhen SM, Jia YL, Zhao Y, et al. NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence[J]. Cell Death Discov, 2024, 10(1): 131. doi:10.1038/s41420-024-01892-w |
[21] | Wang XW, Xu Y, Zhu YC, et al. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy[J]. J Cell Physiol, 2019, 234(8): 12926-33. doi:10.1002/jcp.27959 |
[22] | Lin SP, Wen ZK, Li SX, et al. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis[J]. Acta Biomater, 2022, 142: 345-60. doi:10.1016/j.actbio.2022.02.007 |
[23] | Wei FF, Yan ZY, Zhang XM, et al. LncRNA-NEAT1 inhibits the occurrence and development of pancreatic cancer through spongy miR-146b-5p/traf6[J]. Biotechnol Genet Eng Rev, 2024, 40(2): 1094-112. doi:10.1080/02648725.2023.2192059 |
[24] | Geng F, Jia WC, Li T, et al. Knockdown of lncRNA NEAT1 suppresses proliferation and migration, and induces apoptosis of cervical cancer cells by regulating the miR-377/FGFR1 axis[J]. Mol Med Rep, 2022, 25(1): 10. doi:10.3892/mmr.2021.12526 |
[25] | Zhang K, Zhou H, Yan B, et al. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma[J]. Cancer Cell Int, 2020, 20: 148. doi:10.1186/s12935-020-01224-9 |
[26] | Li PF, Sun Q, Bai SP, et al. Combination of the cuproptosis inducer disulfiram and anti-PD-L1 abolishes NSCLC resistance by ATP7B to regulate the HIF-1 signaling pathway[J]. Int J Mol Med, 2024, 53(2): 19. doi:10.3892/ijmm.2023.5343 |
[27] | Rabiee N, Bagherzadeh M, Ghadiri AM, et al. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor[J]. Sci Rep, 2020, 10(1): 20672. doi:10.1038/s41598-020-77809-1 |
[28] | Lee J, Seo HS, Park W, et al. Biofunctional layered double hydroxide nanohybrids for cancer therapy[J]. Materials (Basel), 2022, 15(22): 7977. doi:10.3390/ma15227977 |
[29] | Zhang SW, Pang SY, Pei WH, et al. Layered double hydroxide-loaded miR-30a for the treatment of breast cancer in vitro and in vivo [J]. ACS Omega, 2023, 8(21): 18435-48. doi:10.1021/acsomega.2c07866 |
[30] | Li L, Qian YJ, Sun LY, et al. Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment[J]. Nanomedicine, 2021, 34: 102369. doi:10.1016/j.nano.2021.102369 |
[31] | Chang MY, Wang M, Liu B, et al. A cancer nanovaccine based on an FeAl-layered double hydroxide framework for reactive oxygen species-augmented metalloimmunotherapy[J]. ACS Nano, 2024, 18(11): 8143-56. doi:10.1021/acsnano.3c11960 |
[1] | Siyuan MA, Bochao ZHANG, Chun PU. Circ_0000437 promotes proliferation, invasion, migration and epithelial-mesenchymal transition of breast cancer cells by targeting the let-7b-5p/CTPS1 axis [J]. Journal of Southern Medical University, 2025, 45(8): 1682-1696. |
[2] | Jiahao LI, Ruiting XIAN, Rong LI. Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells [J]. Journal of Southern Medical University, 2025, 45(6): 1163-1173. |
[3] | Di CHEN, Ying LÜ, Yixin GUO, Yirong ZHANG, Ruixuan WANG, Xiaoruo ZHOU, Yuxin CHEN, Xiaohui WU. Dihydroartemisinin enhances doxorubicin-induced apoptosis of triple negative breast cancer cells by negatively regulating the STAT3/HIF-1α pathway [J]. Journal of Southern Medical University, 2025, 45(2): 254-260. |
[4] | Qiao CHU, Xiaona WANG, Jiaying XU, Huilin PENG, Yulin ZHAO, Jing ZHANG, Guoyu LU, Kai WANG. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways [J]. Journal of Southern Medical University, 2025, 45(1): 150-161. |
[5] | Mingzi OUYANG, Jiaqi CUI, Hui WANG, Zheng LIANG, Dajin PI, Liguo CHEN, Qianjun CHEN, Yingchao WU. Kaixinsan alleviates adriamycin-induced depression-like behaviors in mice by reducing ferroptosis in the prefrontal cortex [J]. Journal of Southern Medical University, 2024, 44(8): 1441-1449. |
[6] | Jincun FANG, Liwei LIU, Junhao LIN, Fengsheng CHEN. Overexpression of CDHR2 inhibits proliferation of breast cancer cells by inhibiting the PI3K/Akt pathway [J]. Journal of Southern Medical University, 2024, 44(6): 1117-1125. |
[7] | Zhi CUI, Cuijiao MA, Qianru WANG, Jinhao CHEN, Ziyang YAN, Jianlin YANG, Yafeng LÜ, Chunyu CAO. A recombinant adeno-associated virus expressing secretory TGF‑β type II receptor inhibits triple-negative murine breast cancer 4T1 cell proliferation and lung metastasis in mice [J]. Journal of Southern Medical University, 2024, 44(5): 818-826. |
[8] | CHEN Shoufeng, ZHANG Shuchao, FAN Weilin, SUN Wei, LIU Beibei, LIU Jianmin, GUO Yuanyuan. Efficacy of combined treatment with pirfenidone and PD-L1 inhibitor in mice bearing ectopic bladder cancer xenograft [J]. Journal of Southern Medical University, 2024, 44(2): 210-216. |
[9] | Youqin ZENG, Siyu CHEN, Yan LIU, Yitong LIU, Ling ZHANG, Jiao XIA, Xinyu WU, Changyou WEI, Ping LENG. AKBA combined with doxorubicin inhibits proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells and xenograft growth in nude mice [J]. Journal of Southern Medical University, 2024, 44(12): 2449-2460. |
[10] | Jinhong ZHANG, Xin LIU, Jian LIU. PHPS1 enhances PD-L1 serine phosphorylation by regulating ROS/SHP-2/AMPK activity to promote apoptosis of oral squamous cell carcinoma cells [J]. Journal of Southern Medical University, 2024, 44(12): 2469-2476. |
[11] | XU Mengqi, SHI Yutong, LIU Junping, WU Minmin, ZHANG Fengmei, HE Zhiqiang, TANG Min. JAG1 affects monocytes-macrophages to reshape the pre-metastatic niche of triple-negative breast cancer through LncRNA MALAT1 in exosomes [J]. Journal of Southern Medical University, 2023, 43(9): 1525-1535. |
[12] | XU Jiaming, LIN Long, CHEN Qionghui, LI Lan. Hsa-miR-148a-3p promotes malignant behavior of breast cancer cells by downregulating DUSP1 [J]. Journal of Southern Medical University, 2023, 43(9): 1515-1524. |
[13] | WANG Li, YAN Zhirui, XIA Yaoxiong. Silencing RAB27a inhibits proliferation, invasion and adhesion of triple-negative breast cancer cells [J]. Journal of Southern Medical University, 2023, 43(4): 560-567. |
[14] | Guangdong Medical Industry Association(GMIA). GMIA-Breast Oncoplastic and Reconstruction Society consensus on operative standards of breast cancer surgery [J]. Journal of Southern Medical University, 2023, 43(10): 1827-1832. |
[15] | GUO Li, MA Yinling, LI Ting, LI Jinping. CD40LG is a novel immune- and stroma-related prognostic biomarker in the tumor microenvironment of invasive breast cancer [J]. Journal of Southern Medical University, 2022, 42(9): 1267-1278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||