Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2449-2460.doi: 10.12122/j.issn.1673-4254.2024.12.22
Youqin ZENG1(), Siyu CHEN1(
), Yan LIU1, Yitong LIU1, Ling ZHANG1, Jiao XIA1, Xinyu WU1, Changyou WEI2, Ping LENG1(
)
Received:
2024-07-24
Online:
2024-12-20
Published:
2024-12-26
Contact:
Ping LENG
E-mail:zengyouqin@163.com;chensiyu2@stu.cdutcm.edu.cn;lengping@cdutcm.edu.cn
Youqin ZENG, Siyu CHEN, Yan LIU, Yitong LIU, Ling ZHANG, Jiao XIA, Xinyu WU, Changyou WEI, Ping LENG. AKBA combined with doxorubicin inhibits proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells and xenograft growth in nude mice[J]. Journal of Southern Medical University, 2024, 44(12): 2449-2460.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.22
Gene | Primer sequence 5'-3' |
---|---|
Caspase-3 | Forward: TATTCCACAGCACCTGGTTA Reverse: CAATACATGGAATCTGTTTCTT |
Bax | Forward: CCTCAGGATGCGTCCACCAAGA Reverse: TGTGTCCACGGCGGCAATCA |
Bcl-2 | Forward: GTGTGTGGAGAGCGTCAACC Reverse: TCTTCAGAGACAGCCAGGAGAA |
GAPDH | Forward: GGAGCGAGATCCCTCCAAAAT Reverse: GGCTGTTGTCATACTTCTCATGG |
PTGS2 | Forward: CTGGCGCTCAGCCATACAG Reverse: CGCACTTATACTGGTCAAATCCC |
Tab.1 Primer sequences for RT-qPCR
Gene | Primer sequence 5'-3' |
---|---|
Caspase-3 | Forward: TATTCCACAGCACCTGGTTA Reverse: CAATACATGGAATCTGTTTCTT |
Bax | Forward: CCTCAGGATGCGTCCACCAAGA Reverse: TGTGTCCACGGCGGCAATCA |
Bcl-2 | Forward: GTGTGTGGAGAGCGTCAACC Reverse: TCTTCAGAGACAGCCAGGAGAA |
GAPDH | Forward: GGAGCGAGATCCCTCCAAAAT Reverse: GGCTGTTGTCATACTTCTCATGG |
PTGS2 | Forward: CTGGCGCTCAGCCATACAG Reverse: CGCACTTATACTGGTCAAATCCC |
Fig.1 CCK-8 assay and SynergyFinder detection of the effect of AKBA combined with ADR on proliferation of MDA-MB-231 cells and drug combination synergy indices. A: Viability of AKBA-treated MDA-MB-231 and MCF-10A cells at 24 and 48 h. B: Viability of ADR-treated MDA-MB-231 and MCF-10A cells at 24 and 48 h. C: Synergistic indices of the combination of AKBA and ADR determined with Synergy Finder. D: Low concentrations of AKBA combined with different concentrations of ADR inhibit proliferation of MDA-MB-231 cells. E: Proliferation of MDA-MB-231 cells treated with saline, AKBA, ADR and AKBA+ADR for 72 h. *P<0.05, **P<0.01, ****P<0.0001.
Fig.2 Effect of AKBA combined with ADR on TNBC cell proliferation and migration. A: Clone formation assay in each group. B: Scratch assay for assessing migration ability of TNBC cells (Original magnification: ×40). C: Transwell migration assay of TNBC cells treated with AKBA combined with ADR (×100). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs CTL; #P<0.05, ##P<0.01, ###P<0.001.
Fig.3 Effect of AKBA combined with ADR on TNBC cell invasion and apoptosis. A: Transwell invasion assay for assessing the ability of TNBC cells to invade stromal gel (×100). B: RT-qPCR for detecting mRNA expressions of apoptosis-related genes in TNBC cells. C: Western blotting for detecting expressions of apoptosis-related proteins in TNBC cells. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs CTL; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.0001.
Fig.4 Effect of AKBA combined with ADR on TNBC xenograft growth and its organ toxicity in nude mice. A: Observation of the tumor-bearing mice and the dissected tumors on day 27 and changes of body weight of the mice and tumor volume over time (black arrows indicate the time points of drug administration). B: HE staining for examining tumor histopathology and evaluating toxic effects of AKBA combined with ADR in the heart, liver, kidney, and lungs of the nude mice (×10). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs CTL; ##P<0.01, ###P<0.001, ####P<0.0001 vs AKBA group; †P<0.05, ††P<0.01 vs ADR group
Fig.5 Network pharmacological analysis of downstream pathways and targets of AKBA in breast cancer. A: Venn diagram of intersected targets of AKBA and breast cancer. B: Protein interaction network obtained by STRING analysis of the intersected targets. C: Protein-protein interaction (PPI) network created was by Cytoscape for identifying the key targets of AKBA in breast cancer. D, E: Bubble diagram of KEGG pathway enrichment analysis of the biological process (BP), cellular composition (CC), molecular function (MF), GeneRatio, ratio of differential genes in KEGG pathway to the total differential genes. F: RT-qPCR of mRNA expression of the predicted target PTGS2 in each group. ****P<0.0001 vs CTL; #P<0.05.
1 | Asleh K, Riaz N, Nielsen TO. Heterogeneity of triple negative breast cancer: current advances in subtyping and treatment implications[J]. J Exp Clin Cancer Res, 2022, 41(1): 265. |
2 | Abu-Khalaf M, Wang C, Zhang ZC, et al. Genomic aberrations in circulating tumor DNAs from palbociclib-treated metastatic breast cancer patients reveal a novel resistance mechanism[J]. Cancers, 2022, 14(12): 2872. |
3 | Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer[J]. J Natl Compr Canc Netw, 2020, 18(4): 479-89. |
4 | Kwakman JJM, Bond MJG, Demichelis RM, et al. Adjuvant chemotherapy in patients with clinically node-negative but pathologically node-positive rectal cancer in the Netherlands: a retrospective analysis[J]. Eur J Cancer, 2024, 197: 113466. |
5 | Kciuk M, Gielecińska A, Mujwar S, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity[J]. Cells, 2023, 12(4): 659. |
6 | Yu J, Wang CX, Kong Q, et al. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products[J]. Phytomedicine, 2018, 40: 125-39. |
7 | Pugazhendhi A, Edison TNJI, Velmurugan BK, et al. Toxicity of Doxorubicin (Dox) to different experimental organ systems[J]. Life Sci, 2018, 200: 26-30. |
8 | 孙春萌, 王雅恬. 中国药科大学高质量完成药用辅料标准相关研究课题[J]. 中国药科大学学报, 2020, 51(2): 137. |
9 | 刘 迪, 张冰洋, 姚 铁, 等. 乳香化学成分及药理作用研究进展[J]. 中草药, 2020, 51(22): 5900-14. |
10 | 哈瑞雯, 周海燕, 詹志来, 等. 乳香化学成分、药理作用研究进展及质量标志物的预测分析[J]. 中华中医药学刊, 2021, 39(11): 94-107. |
11 | Li W, Liu JY, Fu WQ, et al. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase[J]. J Exp Clin Cancer Res, 2018, 37(1): 132. |
12 | Verma M, Fatima S, Saeed M, et al. Anti-proliferative, pro-apoptotic, and chemosensitizing potential of 3-acetyl-11-keto‑β-boswellic acid (AKBA) against prostate cancer cells[J]. Mol Biotechnol, 2024. DOI: 10.1007/s12033-024-01089-7 . |
13 | Yang YT, Guo YL, Luo H, et al. Metabolomics-based discovery of XHP as a CYP3A4 inhibitor against pancreatic cancer[J]. Front Pharmacol, 2023, 14: 1164827. |
14 | Gong C, Li W, Wu J, et al. AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis[J]. J Radiat Res, 2023, 64(1): 33-43. |
15 | Sun MX, He XP, Huang PY, et al. Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog/Akt/cyclooxygenase-2 signaling pathway[J]. World J Gastroenterol, 2020, 26(38): 5822-35. |
16 | Takada Y, Ichikawa H, Badmaev V, et al. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression[J]. J Immunol, 2006, 176(5): 3127-40. |
17 | Xue X, Chen F, Liu AX, et al. Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto‑β-boswellic acid via downregulation of P-glycoprotein signals[J]. Biosci Trends, 2016, 10(5): 392-9. |
18 | Lu J, Wang YC, Shi ZJ, et al. 3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function[J]. Biomedecine Pharmacother, 2019, 116: 108992. |
19 | Jiang XF, Liu YS, Zhang GJ, et al. Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor‑Α[J]. Cancer Manag Res, 2020, 12: 2301-14. |
20 | Ahmed SA, Al-Shanon AF, Al-Saffar AZ, et al. Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto‑β‑boswellic acid against MCF-7 cells in vitro [J]. J Genet Eng Biotechnol, 2023, 21(1): 75. |
21 | Siegel R, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48. |
22 | Lauß J, Kappacher C, Isser O, et al. Species-Specific quantification of bioactive boswellic acids in Boswellia resin using NIR spectroscopy, HPLC and Multivariate data analysis[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2024, 316: 124384. |
23 | Ammon HPT. Boswellic extracts and 11-keto‑β‑boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines[J]. Phytomedicine, 2019, 63: 153002. |
24 | Pan D, Wang Q, Tang SY, et al. Acetyl-11-keto-beta-boswellic acid inhibits cell proliferation and growth of oral squamous cell carcinoma via RAB7B-mediated autophagy[J]. Toxicol Appl Pharmacol, 2024, 485: 116906. |
25 | Park YS, Lee JH, Bondar J, et al. Cytotoxic action of acetyl-11-keto-beta-boswellic acid (AKBA) on meningioma cells[J]. Planta Med, 2002, 68(5): 397-401. |
26 | Sparger CC, Hernandez AE, Rojas KE, et al. Axillary management and long-term oncologic outcomes in breast cancer patients with clinical N1 disease treated with neoadjuvant chemotherapy[J]. World J Surg Oncol, 2024, 22(1): 199. |
27 | Lin XX, Wu GM, Wang S, et al. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity[J]. Front Pharmacol, 2023, 14: 1255158. |
28 | Moon JY, Manh Hung LV, Unno T, et al. Nobiletin enhances chemosensitivity to adriamycin through modulation of the akt/GSK3β/β⁻Catenin/MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells[J]. Nutrients, 2018, 10(12): 1829. |
29 | Li YX, Zhai ZH, Li H, et al. Guajadial reverses multidrug resistance by inhibiting ABC transporter expression and suppressing the PI3K/Akt pathway in drug-resistant breast cancer cells[J]. Chem Biol Interact, 2019, 305: 98-104. |
30 | Smoots SG, Schreiber AR, Jackson MM, et al. Overcoming doxorubicin resistance in triple-negative breast cancer using the class I-targeting HDAC inhibitor bocodepsin/OKI-179 to promote apoptosis[J]. Breast Cancer Res, 2024, 26(1): 35. |
31 | Zhou J, Li XY, Han ZY, et al. Acetyl-11-keto‑β‑boswellic acid restrains the progression of synovitis in osteoarthritis via the Nrf2/HO-1 pathway[J]. Acta Biochim Biophys Sin, 2024. DOI: 10.3724/abbs.2024102 . |
32 | Lv MH, Zhuang XB, Zhang Q, et al. Acetyl-11-keto-β‑boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway[J]. Cell Biol Toxicol, 2021, 37(2): 209-28. |
33 | Yang YH, Li W, Ren LW, et al. S670, an amide derivative of 3-O-acetyl-11-keto‑β‑boswellic acid, induces ferroptosis in human glioblastoma cells by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome[J]. Acta Pharmacol Sin, 2024, 45(1): 209-22. |
34 | Zhang P, Jiang H. Acetyl-11-keto‑β‑boswellic acid confers protection in DSS-induced colitis via the JNK-p38 MAPK and NF-κB signaling pathways[J]. Adv Biol, 2023, 7(6): e2200247. |
35 | Finetti F, Travelli C, Ercoli J, et al. Prostaglandin E2 and cancer: insight into tumor progression and immunity[J]. Biology, 2020, 9(12): 434. |
36 | Hashemi Goradel N, Najafi M, Salehi E, et al. Cyclooxygenase-2 in cancer: a review[J]. J Cell Physiol, 2019, 234(5): 5683-99. |
37 | Ganz PA, Goodwin PJ. Breast cancer survivorship: where are we today[J]? Adv Exp Med Biol, 2015, 862: 1-8. |
38 | Yuan CC, Dong XW, Xu SX, et al. AKBA alleviates experimental pancreatitis by inhibiting oxidative stress in Macrophages through the Nrf2/HO-1 pathway[J]. Int Immunopharmacol, 2023, 121: 110501. |
[1] | Yuming ZHANG, Shicheng XIA, Linlin ZHANG, Mengxi CHEN, Xiaojing LIU, Qin GAO, Hongwei YE. Protective effect of Lonicerae japonicae flos extract against doxorubicin-induced liver injury in mice [J]. Journal of Southern Medical University, 2024, 44(8): 1571-1581. |
[2] | WANG Li, YAN Zhirui, XIA Yaoxiong. Silencing RAB27a inhibits proliferation, invasion and adhesion of triple-negative breast cancer cells [J]. Journal of Southern Medical University, 2023, 43(4): 560-567. |
[3] | WEI Jia, YANG Qiang, LIN Lin, ZHU Canzhan, WEI Jin. Metformin mitigates doxorubicin-induced cardiotoxicity via the AMPK pathway [J]. Journal of Southern Medical University, 2023, 43(10): 1682-1688. |
[4] | XIONG Fengmei, LIU Ruiping, LI Yang, SUN Na. Honokiol reduces doxorubicin-induced cardiotoxicity in vitro by inhibiting pyroptosis via activating AMPK/Nrf2 signaling [J]. Journal of Southern Medical University, 2022, 42(8): 1205-1211. |
[5] | LIU Junping, SHI Yutong, WU Minmin, XU Mengqi, ZHANG Fengmei, HE Zhiqiang, TANG Min. JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis [J]. Journal of Southern Medical University, 2022, 42(7): 1100-1108. |
[6] | FANG Yuxiao, WANG Shumei, YANG Qian, YOU Songfan, XING Xiangling. Chaihu Guizhi Decoction plus or minus formula combined with capecitabine inhibits IL-6/STAT3 signaling to suppress triple-negative breast cancer xenografts in nude mice [J]. Journal of Southern Medical University, 2022, 42(6): 905-912. |
[7] | WANG Ting, YANG Ling, XIE Yuhan, CHENG Siyu, XIONG Min, LUO Xiaoming. An injectable hydrogel/staple fiber composite for sustained release of CA4P and doxorubicin for combined chemotherapy of xenografted breast tumor in mice [J]. Journal of Southern Medical University, 2022, 42(5): 625-632. |
[8] | GE Yu, LU Linming, TIAN Shuyu, XIAO Yu, XIE Shangfu, WANG Qi, ZHI Hui. Agkistrodon halys venom antitumor component-I inhibits vasculogenic mimicry in triple-negative breast cancer cells in vitro by down-regulating MMP2 [J]. Journal of Southern Medical University, 2022, 42(3): 438-442. |
[9] | WANG Lu, ZHAO Lin, ZHANG Lifen, JING Xin, ZHANG Yujiao, SHAO Shan, ZHAO Xinhan, LUO Minna. Vascular endothelial growth factor promotes cancer stemness of triple-negative breast cancer via MAPK/ERK pathway [J]. Journal of Southern Medical University, 2021, 41(10): 1484-1491. |
[10] | . EGFR tyrosine kinase inhibitor HS-10296 induces autophagy and apoptosis in triplenegative breast cancer MDA-MB-231 cells [J]. Journal of Southern Medical University, 2020, 40(07): 981-987. |
[11] | . Sodium valproate enhances doxorubicin cytotoxicity in breast cancer cells in vitro [J]. Journal of Southern Medical University, 2015, 35(01): 62-. |
[12] |
.
Establishment of a NOD/SCID mouse model with human immune reconstitution bearing human triple-negative breast cancer [J]. Journal of Southern Medical University, 2015, 35(01): 56-. |
[13] |
.
Effect of low-molecular-weight heparin combined with doxorubicin on hepatocellular cancer cell migration in vitro [J]. Journal of Southern Medical University, 2014, 34(07): 1048-. |
[14] | YANG Yi-ming1, DU Gang-jun2, LIN Hai-hong2. Experimental study of thalidomide for treatment of murine hepatocellular carcinoma [J]. Journal of Southern Medical University, 2005, 25(08): 925-928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||