南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (9): 1809-1817.doi: 10.12122/j.issn.1673-4254.2025.09.01

• •    

基于乳腺影像报告和数据系统的DWI和T2WI形态评估对乳腺病变的诊断价值

张力莹(), 张同贞, 赵鑫   

  1. 郑州大学第三附属医院放射科,河南 郑州 450052
  • 收稿日期:2025-04-09 接受日期:2025-05-17 出版日期:2025-09-20 发布日期:2025-09-28
  • 通讯作者: 张力莹 E-mail:540185181@qq.com
  • 作者简介:/通信作者:张力莹,硕士,副主任医师,E-mail: 540185181@qq.com

Diagnostic value of morphological features of breast lesions on DWI and T2WI assessed using Breast Imaging Reporting and Data System lexicon descriptors

Liying ZHANG(), Tongzhen ZHANG, Xin ZHAO   

  1. Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2025-04-09 Accepted:2025-05-17 Online:2025-09-20 Published:2025-09-28
  • Contact: Liying ZHANG E-mail:540185181@qq.com
  • Supported by:
    Tianjian Laboratory of Advanced Biomedical Sciences and Medical Science and Technology Plan Joint-Project of Henan Province(LHGJ20210475);2021年河南省医学科技攻关计划联合共建项目(LHGJ20210475)

摘要:

目的 探讨单独及联合应用动态对比增强磁共振成像(DCE)、扩散加权成像(DWI)和T2加权成像(T2WI)的形态学特征对乳腺癌的诊断价值。 方法 回顾性分析394例行3.0T磁共振成像(MRI)检查并经病理学确诊的乳腺病变患者的影像资料。由经过培训的放射科医师分析DCE、DWI和T2WI病灶的形态学特征,对良恶性病变进行组间比较。采用Logistic回归分析构建乳腺癌临床预测模型,使用受试者工作特征曲线下面积(AUC)和DeLong检验比较诊断效能。 结果 对于肿块样病变,所有形态学特征在DCE、DWI和T2WI上均可区分良恶性病变(P<0.05)。联合诊断方法(DCE+DWI+T2WI)的AUC(0.865)高于单独诊断方法(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05)。对于非肿块样病变,DWI信号强度是恶性病变的显著预测因子(P=0.036),但DWI诊断模型的AUC较低(0.669)。 结论 综合分析DCE、DWI和T2WI的形态学特征可提高乳腺肿块样病变的诊断效能。

关键词: 乳腺癌, 磁共振成像, 扩散加权成像, T2加权成像, 诊断准确性

Abstract:

Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement (DCE), diffusion-weighted imaging (DWI), and T2-weighted imaging (T2WI), alone or in combination, in the evaluation of breast cancer. Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging (MRI). The morphological characteristics of breast lesions were evaluated using DCE, DWI, and T2WI based on BI-RADS lexicon descriptors by trained radiologists. Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions, and the differences between benign and malignant lesions in each group were compared. Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis. Diagnostic efficacies were compared using the area under the receiver operating characteristic curve (AUC) and DeLong test. Results For mass-like lesions, all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE, DWI, and T2WI (P<0.05). The combined method (DCE+DWI+T2WI) had a higher AUC (0.865) than any of the individual modality (DCE: 0.786; DWI: 0.793; T2WI: 0.809) (P<0.05). For non-mass-like lesions, DWI signal intensity was a significant predictor of malignancy (P=0.036), but the model using DWI alone had a low AUC (0.669). Conclusion Morphological assessment using the combination of DCE, DWI, and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.

Key words: breast cancer, magnetic resonance imaging, diffusion-weighted imaging, T2-weighted imaging, diagnostic accuracy