南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (8): 1571-1581.doi: 10.12122/j.issn.1673-4254.2024.08.16
张钰明1,2(), 夏士程2,3, 张淋淋1,2, 陈梦茜2,3, 刘晓婧2,3, 高琴1,2(
), 叶红伟1,2(
)
收稿日期:
2024-04-01
出版日期:
2024-08-20
发布日期:
2024-09-06
通讯作者:
高琴,叶红伟
E-mail:306626778@qq.com;bbmcgq@126.com;yehongwei223@163.com
作者简介:
张钰明,在读硕士研究生,E-mail: 306626778@qq.com
基金资助:
Yuming ZHANG1,2(), Shicheng XIA2,3, Linlin ZHANG1,2, Mengxi CHEN2,3, Xiaojing LIU2,3, Qin GAO1,2(
), Hongwei YE1,2(
)
Received:
2024-04-01
Online:
2024-08-20
Published:
2024-09-06
Contact:
Qin GAO, Hongwei YE
E-mail:306626778@qq.com;bbmcgq@126.com;yehongwei223@163.com
摘要:
目的 通过网络药理学与分子对接技术探讨金银花对阿霉素(DOX)肝脏损伤的保护作用和机制,并运用DOX诱导小鼠肝脏损伤实验进行验证。 方法 通过网络药理学方法获得金银花靶点与疾病靶点之间的交集基因。利用STRING数据库构建交集基因PPI网络,利用Cytoscape软件进行分析,筛选核心靶点。采用DAVID数据库进行生物信息学分析,分子对接技术对核心成分和核心靶点进行验证。运用DOX诱导小鼠肝脏损伤验证网络药理学的预测结果。检测小鼠血清ALT、AST水平和肝脏组织HYP、ROS水平,HE染色和Masson染色观察肝脏组织病理变化,ELISA检测肝脏组织TNF-α、IL-6、COL-IV水平,Western blotting检测肝脏组织P53蛋白表达水平。 结果 从交集的43个基因中筛选出12个核心靶点,涉及癌症通路、IL-17信号通路、TNF等信号通路。分子对接结果显示,10个核心成分可以与不同的核心靶点结合。小鼠实验显示,与Sham组相比,DOX组血清AST和ALT水平升高(P<0.001);HE和Masson染色显示肝脏损伤和肝脏纤维化,ROS、TNF-α、IL-6、HYP、COL-IV和P53蛋白水平升高(P<0.001)。与DOX组相比,金银花处理组血清AST和ALT水平降低(P<0.001),肝脏损伤和肝脏纤维化改善,肝脏组织ROS、TNF-α、IL-6、HYP和COL-IV水平和P53蛋白表达降低(P<0.001),肝脏组织氧化应激、炎症和纤维化均减轻。 结论 金银花可通过作用于Trp53、TNF、IL-6靶点减轻肝脏氧化应激、炎症和纤维化程度,减轻DOX诱导的肝脏损伤。
张钰明, 夏士程, 张淋淋, 陈梦茜, 刘晓婧, 高琴, 叶红伟. 金银花提取物对小鼠阿霉素肝脏损伤的保护作用[J]. 南方医科大学学报, 2024, 44(8): 1571-1581.
Yuming ZHANG, Shicheng XIA, Linlin ZHANG, Mengxi CHEN, Xiaojing LIU, Qin GAO, Hongwei YE. Protective effect of Lonicerae japonicae flos extract against doxorubicin-induced liver injury in mice[J]. Journal of Southern Medical University, 2024, 44(8): 1571-1581.
Mol ID | Molecule | OB | DL |
---|---|---|---|
MOL000006 | luteolin | 36.16 | 0.25 |
MOL000098 | quercetin | 46.43 | 0.28 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL002914 | Eriodyctiol (flavanone) | 41.35 | 0.24 |
MOL003006 | (-)-(3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9,9a,10,10a-hexahydro-5-oxo-5H,8H-pyrano[4,3-d]oxazolo[3,2-a]pyridine-3-carboxylic acid_qt | 87.47 | 0.23 |
MOL003014 | secologanic dibutylacetal_qt | 53.65 | 0.29 |
MOL003044 | Chryseriol | 35.85 | 0.27 |
MOL003095 | 5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone | 51.96 | 0.41 |
MOL003111 | Centauroside_qt | 55.79 | 0.5 |
MOL003117 | Ioniceracetalides B_qt | 61.19 | 0.19 |
表1 金银花核心成分
Tab.1 Core components of Lonicerae japonicae flos
Mol ID | Molecule | OB | DL |
---|---|---|---|
MOL000006 | luteolin | 36.16 | 0.25 |
MOL000098 | quercetin | 46.43 | 0.28 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL002914 | Eriodyctiol (flavanone) | 41.35 | 0.24 |
MOL003006 | (-)-(3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9,9a,10,10a-hexahydro-5-oxo-5H,8H-pyrano[4,3-d]oxazolo[3,2-a]pyridine-3-carboxylic acid_qt | 87.47 | 0.23 |
MOL003014 | secologanic dibutylacetal_qt | 53.65 | 0.29 |
MOL003044 | Chryseriol | 35.85 | 0.27 |
MOL003095 | 5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone | 51.96 | 0.41 |
MOL003111 | Centauroside_qt | 55.79 | 0.5 |
MOL003117 | Ioniceracetalides B_qt | 61.19 | 0.19 |
Mol ID | TrP53 Binding energy | TNF Binding energy | IL-6 Binding energy |
---|---|---|---|
MOL000006 | -4.49 | -5.8 | -3.93 |
MOL000098 | -3.93 | -5.6 | -4.24 |
MOL000422 | -4.85 | -5.62 | -4.59 |
MOL002914 | -5.61 | -5.09 | -4.75 |
MOL003006 | -4.7 | -6.97 | -5.31 |
MOL003014 | -2.53 | -2.96 | -0.83 |
MOL003044 | -5.02 | -5.99 | -5.1 |
MOL003095 | -4.7 | -4.9 | -3.59 |
MOL003111 | -2.85 | -4.11 | -3.23 |
MOL003117 | -4.94 | -4.79 | -4.24 |
表2 核心靶点与核心成分结合能
Tab.2 Binding energy of the core targets and core ingredients (kcal/mol)
Mol ID | TrP53 Binding energy | TNF Binding energy | IL-6 Binding energy |
---|---|---|---|
MOL000006 | -4.49 | -5.8 | -3.93 |
MOL000098 | -3.93 | -5.6 | -4.24 |
MOL000422 | -4.85 | -5.62 | -4.59 |
MOL002914 | -5.61 | -5.09 | -4.75 |
MOL003006 | -4.7 | -6.97 | -5.31 |
MOL003014 | -2.53 | -2.96 | -0.83 |
MOL003044 | -5.02 | -5.99 | -5.1 |
MOL003095 | -4.7 | -4.9 | -3.59 |
MOL003111 | -2.85 | -4.11 | -3.23 |
MOL003117 | -4.94 | -4.79 | -4.24 |
图4 分子对接可视化结果
Fig.4 Visualization of molecular docking results. A: Potential interaction between MOL002914 and Trp53. B: Potential interaction between MOL003044 and Trp53. C: Potential interaction between MOL003044 and TNF. D: Potential interaction between MOL003006 and TNF. E: Potential interaction between MOL003006 and IL-6. F: Potential interaction between MOL003044 and IL-6.
图5 各组小鼠血清AST和ALT水平
Fig.5 Serum levels of AST (A) and ALT (B) in mice in each group (Mean±SD, n=6). ***P<0.001 vs Sham; ###P<0.001 vs DOX; $P<0.05, $$P<0.01 vs DOX+LJF (0.2 g/kg); &&P<0.01 vs DOX+LJF (0.4 g/kg).
图6 各组小鼠肝脏HE染色结果
Fig.6 HE staining of mouse liver tissues in each group (Original magnification: ×40). Black arrows indicate erythrocyte exudates, red arrows indicate hepatocyte ballooning, and blue arrows indicate inflammatory cell infiltration.
图7 各组小鼠肝脏Masson染色结果
Fig.7 Masson staining of mouse liver tissue in each group (×120). The black arrows indicate fibrotic hyperplasia and the red arrows indicate hepatocyte balloons.
图9 各组小鼠肝脏组织中TNF-α和IL-6水平
Fig.9 TNF-α (A) and IL-6 (B) levels in mouse liver tissues in each group (Mean±SD, n=6). ***P<0.001 vs Sham; ###P<0.001 vs DOX; $$P<0.01, $$$P<0.001 vs DOX+LJF (0.2 g/kg) ; &&P<0.01 vs DOX+LJF (0.4 g/kg).
图10 各组小鼠肝脏组织中HYP和COL-Ⅳ水平
Fig.10 HYP (A) and COL-IV (B) levels in mouse liver tissues in each group (Mean±SD, n=6). ***P<0.001 vs Sham; ###P<0.001 vs DOX; $P<0.05, $$P<0.01, $$$P<0.001 vs DOX+LJF (0.2 g/kg) ; &P<0.05, &&P<0.01 vs DOX+LJF (0.4 g/kg).
图11 各组小鼠肝脏组织中P53蛋白表达水平
Fig.11 Protein expression level of P53 in mouse liver tissue in each group (Mean±SD, n=6). A: P53 protein expression detected by Western blotting in each group. B: Quantitative data of P53 expression. ***P<0.001 vs Sham; ###P<0.001, ##P<0.01, #P<0.05 vs DOX; &P<0.05 vs DOX+LJF (0.2 g/kg).
1 | Powers SK, Duarte JA, Le Nguyen B, et al. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting[J]. Pflugers Arch, 2019, 471(3): 441-53. |
2 | Li DK, Zhang W, Fu H, et al. DL-3-n-butylphthalide attenuates doxorubicin-induced acute cardiotoxicity via Nrf2/HO-1 signaling pathway[J]. Heliyon, 2024, 10(5): e27644. |
3 | Chen MY, Yi YD, Chen BX, et al. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice[J]. Toxicology, 2024, 503: 153757. |
4 | Badi RM, Khaleel EF, Satti HH, et al. Eriodictyol attenuates doxorubicin-induced nephropathy by activating the AMPK/Nrf2 signalling pathway[J]. J Tradit Complementary Med, 2024, 14(2): 203-14. |
5 | Liu PP, Wu J, Yu XY, et al. Metabolomics and network analyses reveal phenylalanine and tyrosine as signatures of anthracycline-induced hepatotoxicity[J]. Pharmaceuticals, 2023, 16(6): 797. |
6 | Wali AF, Rashid S, Rashid SM, et al. Naringenin regulates doxorubicin-induced liver dysfunction: impact on oxidative stress and inflammation[J]. Plants, 2020, 9(4): 550. |
7 | AlAsmari AF, Alharbi M, Alqahtani F, et al. Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stress-mediated hepatic inflammation and apoptosis via NfkB and MAPK pathway: a preclinical study[J]. Antioxidants, 2021, 10(12): 1998-2013. |
8 | Shati AA, Eid RA, El-Kott AF, et al. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative Stress, preventing inflammation and apoptosis: Ultrastructural and computational approaches[J]. Heliyon, 2024, 10(5): e27164-75. |
9 | Morsy MA, El-Daly M, Kamel BA, et al. Pregnenolone protects the liver against doxorubicin-induced cellular injury by anti-inflammatory, antioxidant, and antiapoptotic mechanisms: role of Keap1/Nrf2/HO-1 and P-glycoprotein[J]. Eur Rev Med Pharmacol Sci, 2023, 27(10): 4718-34. |
10 | Metwally AA, Ganguly S, Biomi N, et al. Cationic vitamin E-TPGS mixed micelles of berberine to neutralize doxorubicin-induced cardiotoxicity via amelioration of mitochondrial dysfunction and impeding apoptosis[J]. Molecules, 2024, 29(5): 1155. |
11 | 李康宁, 宋志领, 贾利龙, 等. 金银花提取物对LPS诱导的急性前部葡萄膜炎小鼠的抗炎作用及其机制[J]. 吉林大学学报: 医学版, 2021, 47(4): 978-83. |
12 | 周慧敏, 马秀梅, 曾海生, 等. 金银花醇提物抗炎、降血脂作用实验研究[J]. 中医药导报, 2022, 28(7): 5–10. |
13 | 汤菲菲, 马 兰. 不同剂量金银花口服液对风热症患儿症状积分改善及预后的影响[J]. 中国医学创新, 2022, 19(26): 77-80. |
14 | 单贺珍, 董 石, 李晓瑞, 等. 金银花提取物增强抗CD19 CAR-T细胞肿瘤杀伤活性[J]. 中南药学, 2022, 20(7): 1545-9. |
15 | Lin YL, Wu YH S, Chao MY, et al. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo [J]. Environ Toxicol, 2024, 39(5): 2881-92. |
16 | Zhang YN, Zhu GH, Liu W, et al. Discovery of the covalent SARS-CoV-2 Mpro inhibitors from antiviral herbs via integrating target-based high-throughput screening and chemoproteomic approaches[J]. J Med Virol, 2023, 95(11): e29208. |
17 | Miao H, Zhang Y, Huang ZL, et al. Lonicera japonica attenuates carbon tetrachloride-induced liver fibrosis in mice: molecular mechanisms of action[J]. Am J Chin Med, 2019, 47(2): 351-67. |
18 | Tao RH, Kobayashi M, Yang YZ, et al. Exercise inhibits doxorubicin-induced damage to cardiac vessels and activation of hippo/YAP-mediated apoptosis[J]. Cancers, 2021, 13(11): 2740. |
19 | Santos-Alves E, Rizo-Roca D, Marques-Aleixo I, et al. Physical exercise positively modulates DOX-induced hepatic oxidative stress, mitochondrial dysfunction and quality control signaling[J]. Mitochondrion, 2019, 47: 103-13. |
20 | Bilgic S, Ozgocmen M. The protective effect of misoprostol against doxorubicin induced liver injury[J]. Biotech Histochem, 2019, 94(8): 583-91. |
21 | Zhou XN, Lu QQ, Kang XZ, et al. Protective role of a new polysaccharide extracted from Lonicera japonica thunb in mice with ulcerative colitis induced by dextran sulphate sodium[J]. Biomed Res Int, 2021, 2021: 8878633. |
22 | Zhang JM, Li WL, Xue SM, et al. Qishen granule attenuates doxorubicin-induced cardiotoxicity by protecting mitochondrial function and reducing oxidative stress through regulation of Sirtuin3[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117134. |
23 | 郝梦超, 姚 甜, 刘二奴, 等. 忍冬中的活性成分及其药理活性研究现状[J]. 药物分析杂志, 2024, 44(2): 195–213. |
24 | 张 倩, 张梅奎, 刘颖璐, 等. 六味酸枣汤治疗围绝经期失眠的作用机制: 基于网络药理学与动物实验[J]. 南方医科大学学报, 2023, 43(9): 1536-47. |
25 | 陈君洁, 黄传兵, 李 明. 健脾滋肾方抑制系统性红斑狼疮患者的足细胞自噬: 基于网络药理学和临床研究[J]. 南方医科大学学报, 2024, 44(3): 465-73. |
26 | Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF‑β1/Smads signalling[J]. Br J Pharmacol, 2019, 176(11): 1619-34. |
27 | 李亚龙. CNPY2介导p53/p66Shc通路在有氧运动干预非酒精性脂肪肝中的作用研究[D]. 成都: 成都体育学院, 2022. |
28 | Zhao J, Han M, Zhou L, et al. TAF and TDF attenuate liver fibrosis through NS5ATP9, TGFβ1/Smad3, and NF‑κB/NLRP3 inflammasome signaling pathways[J]. Hepatol Int, 2020, 14(1): 145-60. |
29 | 王咏兰, 陶柏楠, 陈明环, 等. 基于JAK2/STAT3信号通路探究鬼箭羽醇提物抗CCl4诱导C57BL/6J小鼠肝纤维化作用机制[J]. 中国药理学通报, 2023, 39(5): 875-81. |
30 | Song SS, Chu L, Liang HF, et al. Protective effects of dioscin against doxorubicin-induced hepatotoxicity Via regulation of Sirt1/FOXO1/NF-κb signal[J]. Front Pharmacol, 2019, 10: 1030-9. |
31 | Wan HQ, Ge LL, Li JM, et al. Effects of a novel biflavonoid of Lonicera japonica flower buds on modulating apoptosis under different oxidative conditions in hepatoma cells[J]. Phytomedicine, 2019, 57: 282-91. |
32 | Cenacchi V, Furlanis G, Menichelli A, et al. Co-ultraPEALut in subjective cognitive impairment following SARS-CoV-2 infection: an exploratory retrospective study[J]. Brain Sci, 2024, 14(3): 293. |
33 | Lou JT, Wu F, He WH, et al. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage[J]. Redox Rep, 2024, 29(1): 2341470-9. |
34 | Aon-Im P, Monthakantirat O, Daodee S, et al. Evaluation of the impact of Alternanthera philoxeroides (mart.) Griseb. extract on memory impairment in D-galactose-induced brain aging in mice through its effects on antioxidant enzymes, neuroinflammation, and telomere shortening[J]. Molecules, 2024, 29(2): 503-16. |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 范正媛, 沈子涵, 李亚, 沈婷婷, 李高峰, 李素云. 补肺益肾方对香烟烟雾提取物诱导的人支气管上皮细胞损伤的保护作用及其机制[J]. 南方医科大学学报, 2025, 45(7): 1372-1379. |
[3] | 王立明, 陈宏睿, 杜燕, 赵鹏, 王玉洁, 田燕歌, 刘新光, 李建生. 益气滋肾方通过抑制PI3K/Akt/NF-κB通路改善小鼠慢性阻塞性肺疾病的炎症反应[J]. 南方医科大学学报, 2025, 45(7): 1409-1422. |
[4] | 朱胤福, 李怡燃, 王奕, 黄颖而, 龚昆翔, 郝文波, 孙玲玲. 桂枝茯苓丸活性成分常春藤皂苷元通过抑制JAK2/STAT3通路抑制宫颈癌细胞的生长[J]. 南方医科大学学报, 2025, 45(7): 1423-1433. |
[5] | 王静娴, 任自敬, 周佩洋. S1PR5激动与过表达通过调控氧化应激增强脑微血管内皮细胞屏障功能抵抗氧糖剥夺/复氧复糖损伤[J]. 南方医科大学学报, 2025, 45(7): 1451-1459. |
[6] | 夏冰, 彭进, 丁九阳, 王杰, 唐国伟, 刘国杰, 王沄, 万昌武, 乐翠云. ATF3通过NF-κB信号通路调控动脉粥样硬化斑块内的炎症反应[J]. 南方医科大学学报, 2025, 45(6): 1131-1142. |
[7] | 何丽君, 陈晓菲, 闫陈昕, 师林. 扶正化积汤治疗非小细胞肺癌的分子机制:基于网络药理学及体外实验验证[J]. 南方医科大学学报, 2025, 45(6): 1143-1152. |
[8] | 王心恒, 邵小涵, 李童童, 张璐, 杨勤军, 叶卫东, 童佳兵, 李泽庚, 方向明. 平喘宁方通过调控HMGB1/Beclin-1轴介导的自噬改善患寒哮证大鼠的气道炎症[J]. 南方医科大学学报, 2025, 45(6): 1153-1162. |
[9] | 李国永, 黎仁玲, 刘艺婷, 柯宏霞, 李菁, 王新华. 牛蒡子治疗小鼠病毒性肺炎后肺纤维化的机制:基于代谢组学、网络药理学和实验验证方法[J]. 南方医科大学学报, 2025, 45(6): 1185-1199. |
[10] | 牛民主, 殷丽霞, 乔通, 尹林, 张可妮, 胡建国, 宋传旺, 耿志军, 李静. 旱莲苷A通过调控JAK2/STAT3通路抑制M1型巨噬细胞极化改善葡聚糖硫酸钠诱导的小鼠结肠炎[J]. 南方医科大学学报, 2025, 45(6): 1297-1306. |
[11] | 管丽萍, 颜燕, 卢心怡, 李智峰, 高晖, 曹东, 侯晨曦, 曾靖宇, 李欣怡, 赵洋, 王俊杰, 方会龙. 复方积雪草减轻小鼠日本血吸虫引起的肝纤维化:通过调控TLR4/MyD88通路抑制炎症-纤维化级联反应[J]. 南方医科大学学报, 2025, 45(6): 1307-1316. |
[12] | 张安邦, 孙秀颀, 庞博, 吴远华, 时靖宇, 张宁, 叶涛. 电针预处理通过调节肠道-大脑轴及Nrf2/HO-1信号通路抑制铁死亡减轻大鼠脑缺血再灌注损伤[J]. 南方医科大学学报, 2025, 45(5): 911-920. |
[13] | 唐培培, 谈勇, 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲. 调周滋阴方治疗早发性卵巢功能不全的疗效、安全性及作用机制[J]. 南方医科大学学报, 2025, 45(5): 929-941. |
[14] | 梁晓涛, 熊一凡, 刘雪琪, 梁小珊, 朱晓煜, 谢炜. 活血疏风颗粒通过抑制TLR4/NF-κB通路改善慢性偏头痛小鼠的中枢敏化[J]. 南方医科大学学报, 2025, 45(5): 986-994. |
[15] | 杨洋, 王凯, 柳鉴修, 周志谟, 贾雯, 吴思谋, 李金星, 何方, 程如越. 生命早期两歧双歧杆菌BD-1干预可缓解注意缺陷多动障碍雌性大鼠幼年期的多动行为[J]. 南方医科大学学报, 2025, 45(4): 702-710. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||