南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (9): 1903-1918.doi: 10.12122/j.issn.1673-4254.2025.09.10

• • 上一篇    

肿瘤微环境特异性CT影像组学标签预测非小细胞肺癌免疫治疗疗效

黄启智1,2(), 谢戴鹏3, 姚霖彤2, 李洽轩4, 吴少伟2, 周海榆1,2()   

  1. 1.广东省心血管病研究所,广东 广州 510080
    2.广东省人民医院(广东省医学科学院),广东 广州 510080
    3.中山大学中山医学院生物化学与分子生物学系,广东 广州 510080
    4.浙江大学医学院附属第二医院肺移植科,浙江 杭州 310000
  • 收稿日期:2025-04-12 出版日期:2025-09-20 发布日期:2025-09-28
  • 通讯作者: 周海榆 E-mail:hccxxzz@163.com;zhouhaiyu@gdph.org.cn
  • 作者简介:黄启智,硕士,医师,E-mail: hccxxzz@163.com
  • 基金资助:
    国家自然科学基金(82472064);广东省国际科技合作计划(2022A0505050048);广东省自然科学基金(2024A1515012369);北京希思科临床肿瘤学研究基金(Y-HS202102-0038)

Tumor microenvironment-specific CT radiomics signature for predicting immunotherapy response in non-small cell lung cancer

Qizhi HUANG1,2(), Daipeng XIE3, Lintong YAO2, Qiaxuan LI4, Shaowei WU2, Haiyu ZHOU1,2()   

  1. 1.Guangdong Provincial Institute of Cardiovascular Diseases, Guangzhou 510080, China
    2.Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
    3.Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
    4.Department of Lung Transplantation, Second Affiliated Hospital of Zhejiang University, Hangzhou 310000, China
  • Received:2025-04-12 Online:2025-09-20 Published:2025-09-28
  • Contact: Haiyu ZHOU E-mail:hccxxzz@163.com;zhouhaiyu@gdph.org.cn
  • Supported by:
    National Natural Science Foundation of China(82472064)

摘要:

目的 开发基于胸部CT的肿瘤微环境特异性影像组学模型,结合临床信息构建诺莫图用于预测晚期非小细胞肺癌(aNSCLC)免疫检查点抑制剂(ICIs)疗效。 方法 整合TCGA、GEO和TCIA数据库的转录组与CT影像数据,通过加权基因共表达网络分析(WGCNA)在GEO队列中筛选ICIs治疗相关基因(IRGs),随后在TCGA基于IRGs构建机器学习预后模型并探究高低风险组患者的肿瘤免疫微环境特征;通过 “PyRadiomics” 软件包提取TCIA中lung_3队列的影像组学特征,筛选出与IRGs相关(|r|>0.4)的94个特征。回顾性分析2016年1月~2020年12月在广东省人民医院接受首程ICIs治疗的210例aNSCLC患者,按7∶3的比例分为训练组(n=147)与验证组(n=63),在训练组中通过最小绝对收缩和选择算子筛选影像特征,结合Logistic回归构建临床-影像组学联合模型及诺莫图预测ICIs疗效,采用受试者工作曲线曲线、校准曲线和决策曲线分析评估模型性能。 结果 WGCNA筛选出84个与免疫反应激活通路相关的IRGs,基于与IRGs相关的肿瘤微环境特异性影像组学标签联合临床特征的ICIs疗效预测模型在训练组(AUC=0.725,95% CI:0.644~0.807)和验证组(AUC=0.706,95% CI:0.577~0.836)的表现均优于单一模型,且能有效预测aNSCLC患者生存情况。诺莫图的校准曲线与决策曲线分析证实其临床实用价值。 结论 本研究建立的“基因组-影像组-临床”多维预测体系为aNSCLC的ICIs治疗疗效评估提供了可解释的生物标志物组合及临床决策工具。

关键词: 非小细胞肺癌, 免疫检查点抑制剂, 肿瘤微环境, 机器学习, 影像组学

Abstract:

Objective To construct a nomogram for predicting the efficacy of immune checkpoint inhibitors (ICIs) in advanced non-small cell lung cancer (aNSCLC) by integrating chest CT radiomics signature that reflects the tumor microenvironment (TME) and clinical parameters of the patients. Methods Transcriptomic and CT imaging data from TCGA, GEO and TCIA databases were integrated for weighted gene co-expression network analysis (WGCNA) of the GEO cohort to identify the immunotherapy-related genes (IRGs) associated with ICIs response. A prognostic model was built using these IRGs in the TCGA cohort to assess immune microenvironment features across different risk groups. Radiomics features were extracted from TCIA lung_3 cohort using PyRadiomics, and 94 features showing strong association with IRGs (|r|>0.4) were selected. A retrospective cohort consisting of 210 aNSCLC patients receiving first-line ICIs at Guangdong Provincial People's Hospital was analyzed and divided into training (n=147) and validation (n=63) groups. Least absolute shrinkage and selection operator was used for radiomic features selection, and logistic regression was applied to construct a combined clinical-radiomic model and nomogram for predicting ICIs therapy response. The performance of the model was evaluated using ROC curve, calibration curve, and decision curve analysis. Results WGCNA identified 84 IRGs enriched in immune activation pathways. The combined model outperformed individual models in both the training (AUC=0.725, 95% CI: 0.644-0.807) and validation cohorts (AUC=0.706, 95% CI: 0.577-0.836). Calibration curve and decision curve analyses confirmed the clinical efficacy of the nomogram for predicting ICIs therapy response in aNSCLC patients. Conclusion The genomic-radiomic-clinical multidimensional predictive framework established in this study provides an interpretable biomarker combination and clinical decision-making tool for evaluating ICIs efficacy in aNSCLC, potentially facilitating personalized immunotherapy decision-making.

Key words: non-small cell lung cancer, immune checkpoint inhibitors, tumor microenvironment, machine learning, radiomics