南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1643-1653.doi: 10.12122/j.issn.1673-4254.2025.08.09

• • 上一篇    

基于免疫抑制性Neu_2中性粒细胞亚群模型精准预测前列腺癌生存预后及免疫治疗应答

陈子贤(), 周家伟, 谭磊, 黄志鹏, 薛康颐, 陈明坤()   

  1. 南方医科大学第三附属医院泌尿外科,广东 广州 510000
  • 收稿日期:2025-04-06 出版日期:2025-08-20 发布日期:2025-09-05
  • 通讯作者: 陈明坤 E-mail:czx961147842@163.com;chenmk1@smu.edu.cn
  • 作者简介:陈子贤,在读硕士研究生,E-mail: czx961147842@163.com
  • 基金资助:
    国家自然科学基金(81772257);国家自然科学基金(81602248)

A risk prediction model for prognosis and immunotherapy response in prostate cancer patients based on immunosuppressive neutrophil Neu_2 subsets

Zixian CHEN(), Jiawei ZHOU, Lei TAN, Zhipeng HUANG, Kangyi XUE, Mingkun CHEN()   

  1. Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
  • Received:2025-04-06 Online:2025-08-20 Published:2025-09-05
  • Contact: Mingkun CHEN E-mail:czx961147842@163.com;chenmk1@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81772257)

摘要:

目的 鉴定前列腺癌(PCa)患者免疫抑制性中性粒细胞亚群并构建基于中性粒细胞亚群相关的免疫预后风险模型。 方法 从基因表达综合数据库及癌症基因组图谱数据库收集PCa患者单细胞、转录组数据,通过无监督聚类鉴定前列腺癌中性粒细胞亚群,通过功能富集、细胞互作、伪时序分析鉴定中性粒细胞亚群的生物学功能及对患者免疫调控的影响;通过LASSO-Cox回归构建免疫抑制性中性粒细胞亚群相关预后风险模型,通过生存分析、ROC曲线探讨高低风险组预后差异,采用CIBERSORT、TIDE评分分析预后风险模型与PCa免疫浸润及免疫应答的关系。 结果 和邻近正常组织相比,PCa组织内中性粒细胞浸润比例显著增加(P<0.05)。PCa相关中性粒细胞可聚类为2个独立细胞亚群:Neu_1和Neu_2,其中Neu_2细胞表现为高富集的免疫调节功能和分化成熟状态,并上调TGFB1、ITGB2、LGALS3等免疫抑制性细胞因子;基于Neu_2细胞亚群基因特征构建免疫相关预后风险模型、生存分析和免疫差异分析显示,高风险组患者具有更短的生化复发时间(P<0.05)和有更高比例的Tregs、M2-TAMs细胞浸润(P<0.05);TIDE分析显示,高风险组患者具有免疫排斥和更差的免疫应答评分。 结论 PCa相关中性粒细胞存在显著异质性,基于免疫抑制特征的Neu_2细胞群构建的相关预后风险模型可有效预测PCa患者生存预后及免疫应答反应。

关键词: 单细胞RNA测序, 转录组学, 前列腺癌, 中性粒细胞, 肿瘤微环境

Abstract:

Objective To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets. Methods Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses. Lasso-Cox regression was utilized to construct a prognostic risk model based on the immunosuppressive neutrophil subsets, and survival analysis and ROC curve analysis were used to compare the prognosis of PCa patients with high and low risks stratified using this model. The relationship of the prognostic risk model with PCa immune infiltration and immune response was evaluated using CIBERSORT and TIDE scores. Results PCa tissues showed a significantly greater proportion of infiltrating neutrophils than the adjacent normal tissues (P<0.05). PCa-associated neutrophils could be clustered into two independent cell subsets: Neu_1 and Neu_2. Neu_2 cells exhibited highly enriched immunoregulatory functions and were highly differentiated and mature, with upregulated immunosuppressive cytokines such as TGFB1, ITGB2, and LGALS3. Based on the genetic characteristics of Neu_2 cell subsets, the prognostic risk model was constructed. The patients in the high-risk group identified by the model had a shorter biochemical recurrence time (P<0.05) and a higher proportion of Tregs and M2-TAMs cell infiltration (P<0.05) with a higher risk of immune rejection and poorer immune response scores. Conclusion PCa-associated neutrophils are highly heterogeneous. The prognostic risk model constructed based on the immunosuppressive neutrophil Neu_2 subset can effectively predict both the survival outcomes and immune response of PCa patients.

Key words: single-cell RNA sequencing, transcriptomics, prostate cancer, neutrophils, tumor microenvironment