| [1] |
Wu YT, Hu HF, Wang T, et al. Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis[J]. Front Immunol, 2024, 15: 1414301. doi:10.3389/fimmu.2024.1414301
|
| [2] |
Couch JL, King MG, De Oliveira Silva D, et al. Noisy knees-knee crepitus prevalence and association with structural pathology: a systematic review and meta-analysis[J]. Br J Sports Med, 2025, 59(2): 126-32. doi:10.1136/bjsports-2024-108866
|
| [3] |
Tang S-A, Zhang CQ, Oo WM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2025, 11: 10. doi:10.1038/s41572-025-00594-6
|
| [4] |
Fuggle N, Laslop A, Rizzoli R, et al. Treatment of osteoporosis and osteoarthritis in the oldest old[J]. Drugs, 2025, 85(3): 343-60. doi:10.1007/s40265-024-02138-w
|
| [5] |
Lan WR, Chen XM, Yu H, et al. UGDH lactylation aggravates osteoarthritis by suppressing glycosaminoglycan synthesis and orchestrating nucleocytoplasmic transport to activate MAPK signaling[J]. Adv Sci (Weinh), 2025, 12(20): e2413709. doi:10.1002/advs.202413709
|
| [6] |
Zhou YK, Li MZ, Lin S, et al. Mechanical sensing protein PIEZO1 controls osteoarthritis via glycolysis mediated mesenchymal stem cells-Th17 cells crosstalk[J]. Cell Death Dis, 2025, 16(1): 231. doi:10.1038/s41419-025-07577-1
|
| [7] |
Dong YH, Zhou XM, Zhang ZZ, et al. cGAS-STING aggravates cartilage degradation by promoting glycolysis in temporo-mandibular joint osteoarthritis[J]. J Bone Miner Res, 2025, 40(5): 699-709. doi:10.1093/jbmr/zjaf029
|
| [8] |
Meng JZ, Lu JF, Jiang CC, et al. Collagen hydrogel-driven pyroptosis suppression and combined microfracture technique delay osteoarthritis progression[J]. Biomaterials, 2025, 314: 122817. doi:10.1016/j.biomaterials.2024.122817
|
| [9] |
Ma J, Yang P, Zhou ZB, et al. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development[J]. J Adv Res, 2025, 71: 173-88. doi:10.1016/j.jare.2024.05.033
|
| [10] |
Bao CC, Zhu SY, Song KP, et al. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways[J]. Cell Commun Signal, 2022, 20(1): 132. doi:10.1186/s12964-022-00943-y
|
| [11] |
Bao CC, Zhu SY, Pang DJ, et al. Hexokinase 2 suppression alleviates the catabolic properties in osteoarthritis via HMGA2 and contributes to pulsed electromagnetic field-mediated cartilage protection[J]. Int J Biol Sci, 2025, 21(4): 1459-77. doi:10.7150/ijbs.101597
|
| [12] |
Liu JB, Jia SS, Yang Y, et al. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF‑κB and NLRP3/caspase-1/GSDMD signaling[J]. Biomed Pharmacother, 2023, 158: 114118. doi:10.1016/j.biopha.2022.114118
|
| [13] |
付长龙, 罗 雁, 许佳佳, 等. 透骨消痛胶囊调控circFOXO3缓解骨关节炎软骨细胞糖酵解代谢紊乱的作用机制[J]. 中国中药杂志, 2025, 50(16): 4641-8.
|
| [14] |
金灵璐, 付长龙, 涂海水, 等. 乌头汤对膝骨关节炎大鼠软骨细胞焦亡相关基因表达的影响[J]. 风湿病与关节炎, 2023, 12(3): 1-4, 12.
|
| [15] |
林 晴, 潘丹虹, 李 路, 等. 荣筋拈痛方调控软骨细胞NLRP3/caspase-1/GSDMD通路改善骨关节炎炎性病变的机制[J]. 中华中医药杂志, 2022, 37(10): 5653-8.
|
| [16] |
You XJ, Xie YJ, Tan QY, et al. Glycolytic reprogramming governs crystalline silica-induced pyroptosis and inflammation through promoting lactylation modification[J]. Ecotoxicol Environ Saf, 2024, 283: 116952. doi:10.1016/j.ecoenv.2024.116952
|
| [17] |
Liu RX, Xiao Y, Huang SH, et al. LncRNA XIST inhibits mitophagy and increases mitochondrial dysfunction by promoting BNIP3 promoter methylation to facilitate the progression of KBD[J]. Mol Immunol, 2025, 182: 62-75. doi:10.1016/j.molimm.2025.03.016
|
| [18] |
Fu CL, Lin YM, Lin Q, et al. Protective mechanism of prim-O-glucosylcimifugin in the treatment of osteoarthritis: based on lncRNA XIST regulation of Nav1.7[J]. Biomed Pharmacother, 2024, 181: 117597. doi:10.1016/j.biopha.2024.117597
|
| [19] |
Yang F, Zhang J, Zhao ZJ, et al. Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway[J]. PLoS One, 2023, 18(4): e0284242. doi:10.1371/journal.pone.0284242
|
| [20] |
Zhang Y, Yang L, Mu HT, et al. CVB3 regulates Treg cell pyroptosis through the lncRNA XIST/miR-195-5p/caspase-1 molecular axis[J]. Immunobiology, 2025, 230(2): 152882. doi:10.1016/j.imbio.2025.152882
|
| [21] |
付长龙, 林艳铭, 兰书洁, 等. 透骨消痛胶囊调控Malat1与miR-16-5p的ceRNA减轻骨关节炎软骨细胞“胆固醇-铁” 代谢紊乱的机制[J]. 中国中药杂志, 2025, 50(15): 4363-71.
|
| [22] |
付长龙, 林艳铭, 兰书洁, 等. 透骨消痛胶囊调控Nav1.7减轻膝骨关节炎小鼠软骨细胞退变[J]. 南方医科大学学报, 2024, 44(11): 2074-81. doi:10.12122/j.issn.1673-4254.2024.11.03
|
| [23] |
Liu MY, Wang C, Zhang HW, et al. A systematic review on polysaccharides from Morinda officinalis How: Advances in the preparation, structural characterization and pharmacological activities[J]. J Ethnopharmacol, 2024, 328: 118090. doi:10.1016/j.jep.2024.118090
|
| [24] |
Zhao DF, Xing SQ, Qi J, et al. Alleviating the IL-1β-stimulated extracellular matrix degradation in osteoarthritis, and chondrocyte inflammation by Morinda officinalis polysaccharide via the SIRT6/NF-κB pathway[J]. Biomol Biomed, 2025, 25(7): 1610-20. doi:10.17305/bb.2024.11437
|
| [25] |
黄艳峰, 陈 俊, 林 洁, 等. 荣筋拈痛方对白细胞介素-1β诱导大鼠退变软骨细胞增殖的影响[J]. 中华中医药杂志, 2021, 36(4): 2077-82.
|
| [26] |
王 群, 熊益亮, 赵希睿, 等. 先秦两汉简帛医书中的“痹” 与“痿” 探析[J]. 中医杂志, 2019, 60(9): 730-3.
|
| [27] |
李西海, 刘献祥. 骨关节炎的核心病机: 本痿标痹[J]. 中医杂志, 2014, 55(14): 1248-9, 1252.
|
| [28] |
刘献祥. 基于陈可冀学术思想之骨性关节炎研究[J]. 康复学报, 2016, 26(1): 2-5.
|
| [29] |
刘献祥, 郑春松, 叶蕻芝, 等. 透骨消痛胶囊防治骨性关节炎的化学空间分析[J]. 福建中医学院学报, 2010, 20(2): 16-8, 27. doi:10.3969/j.issn.1004-5627.2010.02.006
|
| [30] |
朱海波, 何忠斌. 透骨消痛胶囊治疗骨质疏松性骨关节炎的临床疗效[J]. 内蒙古中医药, 2019, 38(8): 25-6.
|
| [31] |
洪昆达, 万 甜, 李 俐, 等. 温针合透骨消痛胶囊内服治疗疼痛性膝骨性关节炎30例[J]. 中医药通报, 2010, 9(3): 55-6. doi:10.3969/j.issn.1671-2749.2010.03.017
|
| [32] |
陈 鸿, 洪昆达. 透骨消痛胶囊治疗疼痛性膝骨性关节炎30例[J]. 福建中医药, 2015, 46(2): 21-2.
|
| [33] |
郑春松, 林珠灿, 许惠风, 等. 透骨消痛胶囊治疗骨性关节炎的多向药理学研究[J]. 福建中医药大学学报, 2011(1): 43-7.
|
| [34] |
杨绍春, 瞿广城, 帅 焘. 《黄帝内经》“精神内守” 探究[J]. 云南中医中药杂志, 2025, 46(6): 27-9.
|