南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (10): 2277-2284.doi: 10.12122/j.issn.1673-4254.2025.10.24
• • 上一篇
贺松其(
), 刘洋, 秦梦晨, 何春雨, 江稳滔, 王一钦, 谭思蕊, 孙海燕, 孙海涛
收稿日期:2025-05-29
出版日期:2025-10-20
发布日期:2025-10-24
作者简介:贺松其,教授,博士生导师,E-mail: hesongqijz@126.com
基金资助:
Songqi HE(
), Yang LIU, Mengchen QIN, Chunyu HE, Wentao JIANG, Yiqin WANG, Sirui TAN, Haiyan SUN, Haitao SUN
Received:2025-05-29
Online:2025-10-20
Published:2025-10-24
Supported by:摘要:
肿瘤微环境(TME)免疫抑制与糖酵解异常密切相关,肿瘤细胞通过“Warburg效应”获取代谢优势并抑制免疫应答。中医药通过多靶点调控糖酵解关键酶(如HK2、PKM2)、代谢信号通路(如PI3K/AKT/mTOR、HIF-1α)及非编码RNA,协同抑制乳酸积累、改善血管异常、解除免疫细胞代谢抑制。研究表明,中药单体和复方可增强免疫细胞浸润与功能,改善代谢微环境,并通过纳米递送系统提升治疗精准性。然而,中医药调控糖酵解-TME互作的动态机制尚未完全阐明,需借助单细胞测序等技术深入解析,并推进临床转化研究。未来应聚焦“代谢重编程-免疫激活”协同策略,为肿瘤免疫治疗提供新思路。
贺松其, 刘洋, 秦梦晨, 何春雨, 江稳滔, 王一钦, 谭思蕊, 孙海燕, 孙海涛. 中医药调控糖酵解重塑肿瘤免疫微环境的研究进展[J]. 南方医科大学学报, 2025, 45(10): 2277-2284.
Songqi HE, Yang LIU, Mengchen QIN, Chunyu HE, Wentao JIANG, Yiqin WANG, Sirui TAN, Haiyan SUN, Haitao SUN. Traditional Chinese medicine for regulating glycolysis to remodel the tumor immune microenvironment: research progress and future prospects[J]. Journal of Southern Medical University, 2025, 45(10): 2277-2284.
| [1] | Zhao JP, Jin DD, Huang MX, et al. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target[J]. Front Cell Dev Biol, 2024, 12: 1416472. doi:10.3389/fcell.2024.1416472 |
| [2] | Chen Z, Han FF, Du Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8(1): 70. doi:10.1038/s41392-023-01332-8 |
| [3] | Wang S, Zhou LY, Ji N, et al. Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression[J]. Drug Resist Updat, 2023, 69: 100976. doi:10.1016/j.drup.2023.100976 |
| [4] | Huang L, Li HT, Zhang CG, et al. Unlocking the potential of T-cell metabolism reprogramming: advancing single-cell approaches for precision immunotherapy in tumour immunity[J]. Clin Transl Med, 2024, 14(3): e1620. doi:10.1002/ctm2.1620 |
| [5] | Liu SY, Liao S, Liang L, et al. The relationship between CD4+ T cell glycolysis and their functions[J]. Trends Endocrinol Metab, 2023, 34(6): 345-60. doi:10.1016/j.tem.2023.03.006 |
| [6] | Laumont CM, Banville AC, Gilardi M, et al. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022, 22(7): 414-30. doi:10.1038/s41568-022-00466-1 |
| [7] | Bousbaine D, Obeng EM, Li ZY, et al. Site-specific labeling uncovers differences in levels and distribution of B-cell receptors of different isotypes on primary B cells[J]. J Immunol, 2025: vkaf062. doi:10.1093/jimmun/vkaf062 |
| [8] | Jayachandran N, Mejia EM, Sheikholeslami K, et al. TAPP adaptors control B cell metabolism by modulating the phosphatidylinositol 3-kinase signaling pathway: a novel regulatory circuit preventing autoimmunity[J]. J Immunol, 2018, 201(2): 406-16. doi:10.4049/jimmunol.1701440 |
| [9] | Hu ZL, Yu XY, Ding R, et al. Glycolysis drives STING signaling to facilitate dendritic cell antitumor function[J]. J Clin Invest, 2023, 133(7): e166031. doi:10.1172/jci166031 |
| [10] | Terrén I, Orrantia A, Vitallé J, et al. NK cell metabolism and tumor microenvironment[J]. Front Immunol, 2019, 10: 2278. doi:10.3389/fimmu.2019.02278 |
| [11] | Wang MN, Liu YH, Li YS, et al. Tumor microenvironment-responsive nanoparticles enhance IDO1 blockade immunotherapy by remodeling metabolic immunosuppression[J]. Adv Sci (Weinh), 2025, 12(5): e2405845. doi:10.1002/advs.202405845 |
| [12] | Liu Q, Zhu FM, Liu XN, et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics[J]. Nat Metab, 2022, 4(5): 559-74. doi:10.1038/s42255-022-00575-z |
| [13] | Guo CS, You ZY, Shi H, et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity[J]. Nature, 2023, 620(7972): 200-8. doi:10.1038/s41586-023-06299-8 |
| [14] | Edwards DN, Ngwa VM, Raybuck AL, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer[J]. J Clin Invest, 2021, 131(4): e140100. doi:10.1172/jci140100 |
| [15] | Fong W, Li Q, Ji FF, et al. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis[J]. Gut, 2023, 72(12): 2272-85. doi:10.1136/gutjnl-2023-329543 |
| [16] | Bignard J, Atassi F, Claude O, et al. T-cell dysregulation and inflammatory process in Gcn2 (Eif2ak4-/-)-deficient rats in basal and stress conditions[J]. Am J Physiol Lung Cell Mol Physiol, 2023, 324(5): L609-24. doi:10.1152/ajplung.00460.2021 |
| [17] | Trauelsen M, Hiron TK, Lin D, et al. Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling[J]. Cell Rep, 2021, 35(11): 109246. doi:10.1016/j.celrep.2021.109246 |
| [18] | Yuan HR, Wu XJ, Wu QL, et al. Lysine catabolism reprograms tumour immunity through histone crotonylation[J]. Nature, 2023, 617(7962): 818-26. doi:10.1038/s41586-023-06061-0 |
| [19] | Huang C, Chen B, Wang X, et al. Gastric cancer mesenchymal stem cells via the CXCR2/HK2/PD-L1 pathway mediate immuno-suppression[J]. Gastric Cancer, 2023, 26(5): 691-707. doi:10.1007/s10120-023-01405-1 |
| [20] | Liu HS, Liang ZX, Cheng SJ, et al. Mutant KRAS drives immune evasion by sensitizing cytotoxic T-cells to activation-induced cell death in colorectal cancer[J]. Adv Sci (Weinh), 2023, 10(6): e2203757. doi:10.1002/advs.202203757 |
| [21] | Rao DS, Stunnenberg JA, Lacroix R, et al. Acidity-mediated induction of FoxP3+ regulatory T cells[J]. Eur J Immunol, 2023, 53(6): e2250258. doi:10.1002/eji.202250258 |
| [22] | Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-18.e9. doi:10.1016/j.ccell.2022.01.001 |
| [23] | Zhang T, Zhu XY, Wu HC, et al. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose[J]. J Cell Mol Med, 2019, 23(5): 3711-23. doi:10.1111/jcmm.14276 |
| [24] | Yang K, Xu JJ, Fan M, et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling[J]. Front Immunol, 2020, 11: 587913. doi:10.3389/fimmu.2020.587913 |
| [25] | Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. doi:10.1016/j.pharmthera.2019.107451 |
| [26] | Caronni N, Simoncello F, Stafetta F, et al. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer[J]. Cancer Res, 2018, 78(7): 1685-99. doi:10.1158/0008-5472.can-17-1307 |
| [27] | Guo XW, Tan SY, Wang TX, et al. NAD+salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity[J]. Hepatology, 2023, 78(2): 468-85. doi:10.1002/hep.32658 |
| [28] | Wu QH, You L, Nepovimova E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape[J]. J Hematol Oncol, 2022, 15(1): 77. doi:10.1186/s13045-022-01292-6 |
| [29] | Hu LR, Sun CL, Yuan K, et al. Expression, regulation, and function of PD-L1 on non-tumor cells in the tumor microenvironment[J]. Drug Discov Today, 2024, 29(11): 104181. doi:10.1016/j.drudis.2024.104181 |
| [30] | Yu LB, Xu LY, Chen YJ, et al. IDO1 inhibition promotes activation of tumor-intrinsic STAT3 pathway and induces adverse tumor-protective effects[J]. J Immunol, 2024, 212(7): 1232-43. doi:10.4049/jimmunol.2300545 |
| [31] | Shurin MR, Umansky V. Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy[J]. J Clin Invest, 2022, 132(9): e159473. doi:10.1172/jci159473 |
| [32] | Li JY, Zhang D, Wang SH, et al. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer[J]. J Adv Res, 2025, 68: 341-57. doi:10.1016/j.jare.2024.02.023 |
| [33] | Zheng XQ, Pan YH, Yang GJ, et al. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1[J]. Eur J Pharmacol, 2022, 931: 175226. doi:10.1016/j.ejphar.2022.175226 |
| [34] | Guo WC, Ding YM, Pu CM, et al. Curcumin inhibits pancreatic cancer cell proliferation by regulating Beclin1 expression and inhibiting the hypoxia-inducible factor-1α-mediated glycolytic pathway[J]. J Gastrointest Oncol, 2022, 13(6): 3254-62. doi:10.21037/jgo-22-802 |
| [35] | Guo SS, Zhou L, Liu XQ, et al. Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis[J]. Phytomedicine, 2024, 130: 155757. doi:10.1016/j.phymed.2024.155757 |
| [36] | Peng YC, He ZJ, Yin LC, et al. Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB Aix to inhibit autophagic flux[J]. Phytomedicine, 2025, 136: 156337. doi:10.1016/j.phymed.2024.156337 |
| [37] | Qian X, Bi QY, Wang ZN, et al. Qingyihuaji Formula promotes apoptosis and autophagy through inhibition of MAPK/ERK and PI3K/Akt/mTOR signaling pathway on pancreatic cancer in vivo and in vitro[J]. J Ethnopharmacol, 2023, 307: 116198. doi:10.1016/j.jep.2023.116198 |
| [38] | Khan K, Quispe C, Javed Z, et al. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer[J]. Cancer Cell Int, 2020, 20(1): 560. doi:10.1186/s12935-020-01660-7 |
| [39] | Wang P, Yang HQ, Lin WJ, et al. Discovery of novel sesquiterpene lactone derivatives as potent PKM2 activators for the treatment of ulcerative colitis[J]. J Med Chem, 2023, 66(8): 5500-23. |
| [40] | Jia LJ, Huang S, Yin XR, et al. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction[J]. Life Sci, 2018, 208: 123-30. doi:10.1016/j.lfs.2018.07.027 |
| [41] | Shang PF, Yang JW, Shao LJ, et al. Quercetin inhibits malignant progression of high metastatic advanced colon cancer in hypoxia via suppressing ROS and PI3K/AKT pathway[J]. Pharm Sci Adv, 2024, 2: 100057. doi:10.1016/j.pscia.2024.100057 |
| [42] | Yadav S, Bhagat SD, Gupta A, et al. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer[J]. BMC Cancer, 2019, 19(1): 1031. doi:10.1186/s12885-019-6257-1 |
| [43] | Wong LW, Goh CBS, Tan JBL. A systemic review for ethnopharmacological studies on Isatis indigotica fortune: bioactive compounds and their therapeutic insights[J]. Am J Chin Med, 2022, 50(1): 161-207. doi:10.1142/s0192415x22500069 |
| [44] | Xie RY, Fang XL, Zheng XB, et al. Salidroside and FG-4592 ameliorate high glucose-induced glomerular endothelial cells injury via HIF upregulation[J]. Biomed Pharmacother, 2019, 118: 109175. doi:10.1016/j.biopha.2019.109175 |
| [45] | Meng GB, Li PY, Du XM, et al. Berberine alleviates ulcerative colitis by inhibiting inflammation through targeting IRGM1[J]. Phytomedicine, 2024, 133: 155909. doi:10.1016/j.phymed.2024.155909 |
| [46] | Li YY, Xu QF, Yang W, et al. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells[J]. Gene, 2019, 712: 143956. doi:10.1016/j.gene.2019.143956 |
| [47] | Wang MF, Yuan CY, Wu Z, et al. Paris saponin VII reverses resistance to PARP inhibitors by regulating ovarian cancer tumor angiogenesis and glycolysis through the RORα/ECM1/VEGFR2 signaling axis[J]. Int J Biol Sci, 2024, 20(7): 2454-75. doi:10.7150/ijbs.91861 |
| [48] | Guo SQ, Ma BJ, Jiang XK, et al. Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer[J]. Front Pharmacol, 2020, 11: 598. doi:10.3389/fphar.2020.00598 |
| [49] | Li Y, Gong P, Hou JX, et al. miR-34a regulates multidrug resistance via positively modulating OAZ2 signaling in colon cancer cells[J]. J Immunol Res, 2018, 2018: 7498514. doi:10.1155/2018/7498514 |
| [50] | 李美乐, 金 凯, 唐 婷, 等. 人参皂苷调控非编码RNA抗肿瘤的研究进展[J]. 中国癌症防治杂志, 2023, 15(5): 576-80. |
| [51] | Wang CQ, Li YM, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2[J]. Nat Commun, 2020, 11(1): 3162. doi:10.1038/s41467-020-16966-3 |
| [52] | Liu CF, Rokavec M, Huang ZK, et al. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis[J]. Cell Death Differ, 2023, 30(7): 1771-85. doi:10.1038/s41418-023-01178-1 |
| [53] | Yu P, Li JY, Luo YQ, et al. Mechanistic role of Scutellaria baicalensis Georgi in breast cancer therapy[J]. Am J Chin Med, 2023, 51(2): 279-308. doi:10.1142/s0192415x23500155 |
| [54] | Liu W, Pan HF, Yang LJ, et al. Panax ginseng C.A. Meyer (Rg3) ameliorates gastric precancerous lesions in Atp4a-/- mice via inhibition of glycolysis through PI3K/AKT/miRNA-21 pathway[J]. Evid Based Complement Alternat Med, 2020, 2020: 2672648. doi:10.1155/2020/2672648 |
| [55] | Li QY, Zhang CH, Xu GC, et al. Astragalus polysaccharide ameliorates CD8+ T cell dysfunction through STAT3/Gal-3/LAG3 pathway in inflammation-induced colorectal cancer[J]. Biomed Pharmacother, 2024, 171: 116172. doi:10.1016/j.biopha.2024.116172 |
| [56] | 刘晓卉, 詹 盛, 林秀坤, 等. 白花蛇舌草、半枝莲及其药对配伍对人胰腺癌Panc28细胞及人肝癌Bel7402细胞葡萄糖摄取能力及乳酸水平的影响[J]. 中医杂志, 2020, 61(10): 890-5. |
| [57] | 苏 畅, 李小江, 贾英杰, 等. 香菇多糖的抗肿瘤作用机制研究进展[J]. 中草药, 2019, 50(6): 1499-504. |
| [58] | Yang Y, Qi J, Wang Q, et al. Berberine suppresses Th17 and dendritic cell responses[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2516-22. doi:10.1167/iovs.12-11217 |
| [59] | Ehteshamfar SM, Akhbari M, Afshari JT, et al. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation[J]. J Cell Mol Med, 2020, 24(23): 13573-88. doi:10.1111/jcmm.16049 |
| [60] | Wang M, Chen H, He X, et al. Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels[J]. J Gastrointest Oncol, 2022, 13(5): 2144-53. doi:10.21037/jgo-22-877 |
| [61] | 黄 青, 李丽媛, 刘晴晴, 等. 灵芝多糖和猪苓多糖及其复方的免疫调节作用研究进展[J]. 食品科学, 2020, 41(17): 275-82. |
| [62] | Sun YF, Gong CY, Ni ZY, et al. Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5[J]. J Leukoc Biol, 2021, 110(2): 315-25. doi:10.1002/jlb.5ma1120-776rr |
| [63] | 陶宫佳, 陈林林, 宋泽成, 等. 苦参碱及衍生物的抗炎作用及其机制研究进展[J]. 药学实践与服务, 2025, 43(4): 163-8, 194. |
| [64] | Shah D, Challagundla N, Dave V, et al. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages[J]. Phytomedicine, 2022, 99: 153904. doi:10.1016/j.phymed.2021.153904 |
| [65] | Chen Z, Tang WJ, Zhou YH, et al. Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism[J]. Ann Transl Med, 2021, 9(22): 1701. doi:10.21037/atm-21-5975 |
| [66] | Tuoheti K, Bai XJ, Yang LJ, et al. Forsythiaside A suppresses renal fibrosis and partial epithelial-mesenchymal transition by targeting THBS1 through the PI3K/AKT signaling pathway[J]. Int Immunopharmacol, 2024, 129: 111650. doi:10.1016/j.intimp.2024.111650 |
| [67] | Ke X, Chen ZQ, Wang XQ, et al. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis[J]. Autoimmunity, 2023, 56(1): 2189133. doi:10.1080/08916934.2023.2189133 |
| [68] | Liu B, Zhang HQ, Li J, et al. Triptolide downregulates Treg cells and the level of IL-10, TGF-β, and VEGF in melanoma-bearing mice[J]. Planta Med, 2013, 79(15): 1401-7. doi:10.1055/s-0033-1350708 |
| [69] | Cao Y, Feng YH, Gao LW, et al. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo[J]. Int Immunopharmacol, 2019, 70: 110-6. doi:10.1016/j.intimp.2019.01.041 |
| [70] | Lai ZH, Pang YY, Zhou YJ, et al. Luteolin as an adjuvant effectively enhanced the efficacy of adoptive tumor-specific CTLs therapy[J]. BMC Cancer, 2025, 25(1): 411. doi:10.1186/s12885-025-13831-8 |
| [71] | Song LJ, Zhu SM, Liu C, et al. Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway[J]. J Food Biochem, 2022, 46(3): e13703. doi:10.1111/jfbc.13703 |
| [72] | Chen X, He Y, Yu ZJ, et al. Polydatin glycosides improve monocrotaline-induced pulmonary hypertension injury by inhibiting endothelial-to-mesenchymal transition[J]. Front Pharmacol, 2022, 13: 862017. doi:10.3389/fphar.2022.862017 |
| [73] | Chen XY, Yang T, Zhou Y, et al. Astragaloside IV combined with ligustrazine ameliorates abnormal mitochondrial dynamics via Drp1 SUMO/deSUMOylation in cerebral ischemia-reperfusion injury[J]. CNS Neurosci Ther, 2024, 30(4): e14725. doi:10.1111/cns.14725 |
| [74] | Min L, Wang HQ, Qi H. Astragaloside IV suppresses the effects of hepatocellular carcinoma cells on proliferation, angiogenesis, and invasion in human umbilical vein endothelial cells by controlling exosomes by inhibiting Rab27a[J]. J Food Biochem, 2023, 2023(1): 8812742. doi:10.1155/2023/8812742 |
| [75] | Sui H, Zhao JH, Zhou LH, et al. Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer[J]. Cancer Lett, 2017, 403: 86-97. doi:10.1016/j.canlet.2017.05.013 |
| [76] | Lan JS, Zeng RF, Li Z, et al. Biomimetic nanomodulators with synergism of photothermal therapy and vessel normalization for boosting potent anticancer immunity[J]. Adv Mater, 2024, 36(40): e2408511. doi:10.1002/adma.202408511 |
| [77] | Liu HY, Li X, Zhang CW, et al. GJB2 promotes HCC progression by activating glycolysis through cytoplasmic translocation and generating a suppressive tumor microenvironment based on single cell RNA sequencing[J]. Adv Sci (Weinh), 2024, 11(39): e2402115. doi:10.1002/advs.202402115 |
| [78] | Yang L, Wang YN, Ye XT, et al. Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies[J]. Chin J Nat Med, 2024, 22(12): 1177-92. doi:10.1016/s1875-5364(24)60746-6 |
| [79] | 吴秋雪, 孙梦瑶, 许 博, 等. 左金丸醇提物抑制人胃癌SGC-7901细胞糖酵解的作用机制[J]. 中草药, 2021, 52(1): 145-51. |
| [80] | Zhang HY, Li QB, Li YX, et al. Effects of Huang-Lian-Jie-Du decoction on improving skin barrier function and modulating T helper cell differentiation in 1-chloro-2, 4-dinitrobenzene-induced atopic dermatitis mice[J]. Front Pharmacol, 2024, 15: 1487402. doi:10.3389/fphar.2024.1487402 |
| [81] | Zhan X, Xu X, Zhang P, et al. Crude polysaccharide from Danggui Buxue decoction enhanced the anti-tumor effect of gemcitabine by remodeling tumor-associated macrophages[J]. Int J Biol Macromol, 2023, 242(Pt 4): 125063. doi:10.1016/j.ijbiomac.2023.125063 |
| [82] | 王 旭. 基于JAK2/STAT3通路探讨半枝莲-白花蛇舌草药对联合PD-1 mABs抗癌的生物学机制[D]. 天津: 天津中医药大学, 2023. |
| [83] | Yang Y, Sun MY, Yao WB, et al. Compound Kushen injection relieves tumor-associated macrophage-mediated immunosu-ppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib[J]. J Immunother Cancer, 2020, 8(1): e000317. doi:10.1136/jitc-2019-000317corr1 |
| [1] | 周海忆, 何斯怡, 韩瑞芳, 关永格, 董丽娟, 宋阳. 艾灸通过调控miR-223-3p/NLRP3焦亡通路修复薄型子宫内膜[J]. 南方医科大学学报, 2025, 45(7): 1380-1388. |
| [2] | 于滢, 涂丽, 刘洋, 宋雪翼, 邵倩倩, 唐小龙. TGF-β通过miR-23a-3p/IRF1轴下调主要组织相容性复合体I类表达促进肝癌免疫逃逸[J]. 南方医科大学学报, 2025, 45(7): 1397-1408. |
| [3] | 侯鑫睿, 张振东, 曹明远, 杜予心, 王小平. 红景天苷靶向miR-1343-3p-OGDHL/PDHB糖代谢轴抑制胃癌细胞的体内外增殖[J]. 南方医科大学学报, 2025, 45(6): 1226-1239. |
| [4] | 李煜桐, 宋杏钰, 孙蕊旭, 董璇, 刘宏伟. PYCR1的泛癌分析及其对膀胱癌化疗和免疫治疗应答的潜在预测价值[J]. 南方医科大学学报, 2025, 45(4): 880-892. |
| [5] | 鲁辉, 宋博文, 施金冉, 王舜印, 陈孝华, 杨晶晶, 葛思堂, 左芦根. 高表达SF3B3促进胃癌细胞恶性增殖并与患者不良预后相关[J]. 南方医科大学学报, 2025, 45(10): 2240-2249. |
| [6] | 朱名扬, 王博康, 张秀森, 周克旭, 苗泽宇, 孙江涛. 基线水平CCL19+树突状细胞可有效预测肺腺癌患者免疫治疗的敏感性[J]. 南方医科大学学报, 2024, 44(8): 1529-1536. |
| [7] | 温小慧, 黄诗雅, 刘学红, 李坤寅, 关永格. Notch1信号通过调控细胞增殖、迁移、侵袭和糖酵解参与子宫腺肌病的发生及发展[J]. 南方医科大学学报, 2024, 44(8): 1599-1604. |
| [8] | 郑孟冬, 刘妍, 刘娇娇, 康巧珍, 王婷. 蛋白4.1R对肝细胞HL-7702增殖、凋亡以及糖酵解的影响[J]. 南方医科大学学报, 2024, 44(7): 1355-1360. |
| [9] | 何欣容, 熊斯丽, 朱真如, 孙景苑, 曹传辉, 王惠. UBE2T通过调节性T细胞诱导肝细胞癌的放疗抵抗[J]. 南方医科大学学报, 2024, 44(6): 1149-1158. |
| [10] | 满 豪, 王建伟, 吴 毛, 邵 阳, 杨俊锋, 李绍烁, 吕锦业, 周 悦. 脊髓康通过激活星形胶质细胞的YAP/PKM2信号轴促进脊髓损伤大鼠神经功能的恢复[J]. 南方医科大学学报, 2024, 44(4): 636-643. |
| [11] | 王梓凝, 杨 明, 李双磊, 迟海涛, 王军惠, 肖苍松. 心肌梗死后心肌纤维化小鼠心肌线粒体功能和能量代谢重塑相关性的转录组学分析[J]. 南方医科大学学报, 2024, 44(4): 666-674. |
| [12] | 颜秋霞, 曾 鹏, 黄树强, 谭翠钰, 周秀琴, 乔 静, 赵晓英, 冯 玲, 朱振杰, 张国志, 胡 鸿, 陈彩蓉. RBMX通过下调PKM2抑制膀胱癌细胞的增殖、迁移、侵袭和糖酵解[J]. 南方医科大学学报, 2024, 44(1): 9-16. |
| [13] | 冯 雯, 赖跃兴, 王 静, 徐 萍. 长链非编码RNA ABHD11-AS1促进胃癌细胞糖酵解并加速肿瘤恶性进展[J]. 南方医科大学学报, 2023, 43(9): 1485-1492. |
| [14] | 王帆帆, 刘 健, 方妍妍, 文建庭, 贺明玉, 韩 琦, 李 旭. 中医药治疗可降低类风湿关节炎合并血小板升高患者再入院的风险:一项匹配队列研究[J]. 南方医科大学学报, 2023, 43(9): 1548-1557. |
| [15] | 王秋生, 张 震, 王 炼, 汪 煜, 姚新宇, 王月月, 张小凤, 葛思堂, 左芦根. 高表达DAP5促进胃癌细胞的糖代谢并与不良预后相关[J]. 南方医科大学学报, 2023, 43(7): 1063-1070. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||