| [1] |
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913. doi:10.1183/13993003.01913-2018
|
| [2] |
Hoeper MM, Badagliacca R, Berger RMF, et al. Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS).[J]. Eur Heart J, 2023, 44(15):1312.
|
| [3] |
Maron BA, Galiè N. Pulmonary Arterial Hypertension Diagnosis, Treatment, and Clinical Management in the Contemporary Era[J]. JAMA Cardiol, 2016, 1(9): 1056-1065. doi:10.1001/jamacardio.2016.4471
|
| [4] |
Hurdman J, Condliffe R, Elliot CA, et al. ASPIRE registry: assessing the Spectrum of Pulmonary hypertension Identified at a REferral centre[J]. Eur Respir J, 2012, 39(4): 945-55. doi:10.1183/09031936.00078411
|
| [5] |
Zheng R, Xu T, Wang X, et al. Stem cell therapy in pulmonary hypertension: current practice and future opportunities[J]. Eur Respir Rev, 2023, 32(169): 230112. doi:10.1183/16000617.0112-2023
|
| [6] |
Xu K, Sun S, Yan M, et al. DDX5 and DDX17-multifaceted proteins in the regulation of tumorigenesis and tumor progression[J]. Front Oncol, 2022, 12: 943032. doi:10.3389/fonc.2022.943032
|
| [7] |
Wang SB, Narendran S, Hirahara S, et al. DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retro-transposon RNAs[J]. Sci Immunol, 2021, 6(66): eabi4493. doi:10.1126/sciimmunol.abi4493
|
| [8] |
Caretti G, Schiltz RL, Dilworth FJ, et al. The RNA helicases p68/p72 and the noncoding RNA sra are coregulators of MyoD and skeletal muscle differentiation[J]. Dev Cell, 2006, 11(4): 547-60. doi:10.1016/j.devcel.2006.08.003
|
| [9] |
Liu H, Gao X, Zhang W, et al. DDX17-mediated upregulation of CXCL8 promotes hepatocellular carcinoma progression via co-activating β-catenin/NF-κB complex[J]. Int J Biol Sci, 2025, 21(3): 1342-60. doi:10.7150/ijbs.104165
|
| [10] |
Fuller-Pace FV. DEAD box RNA helicase functions in cancer[J]. RNA Biol, 2013, 10(1): 121-32. doi:10.4161/rna.23312
|
| [11] |
Liu X, Li L, Geng C, et al. DDX17 promotes the growth and metastasis of lung adenocarcinoma[J]. Cell Death Discov, 2022, 8(1): 425. doi:10.1038/s41420-022-01215-x
|
| [12] |
Zhao G, Wang Q, Zhang Y, et al. DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer[J]. Cell Death Dis, 2023, 14(1): 1. doi:10.1038/s41419-022-05508-y
|
| [13] |
Zhou HZ, Li F, Cheng ST, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis[J]. Hepatology, 2022, 75(4): 847-65. doi:10.1002/hep.32195
|
| [14] |
Wu XC, Yan WG, Ji ZG, et al. Long noncoding RNA SNHG20 promotes prostate cancer progression via upregulating DDX17[J]. Arch Med Sci, 2021, 17(6): 1752-65.
|
| [15] |
Yan M, Gao J, Lan M, et al. DEAD-box helicase 17 (DDX17) protects cardiac function by promoting mitochondrial homeostasis in heart failure[J]. Signal Transduct Target Ther, 2024, 9(1): 127. doi:10.1038/s41392-024-01831-2
|
| [16] |
Lin B, Wang F, Wang J, et al. The protective role of p72 in doxorubicin-induced cardiomyocytes injury in vitro [J]. Mol Med Rep, 2016, 14(4): 3376-80. doi:10.3892/mmr.2016.5600
|
| [17] |
Gao R, Wang L, Bei Y, et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury[J]. Circulation, 2021, 144(4): 303-17. doi:10.1161/circulationaha.120.050446
|
| [18] |
Liu GB, Cheng YX, Li HM, et al. Ghrelin promotes cardiomyocyte differentiation of adipose tissue-derived mesenchymal stem cells by DDX17-mediated regulation of the SFRP4/Wnt/β-catenin axis[J]. Mol Med Rep, 2023, 28(3): 164. doi:10.3892/mmr.2023.13050
|
| [19] |
He C, Zhang G, Lu Y, et al. DDX17 modulates the expression and alternative splicing of genes involved in apoptosis and proliferation in lung adenocarcinoma cells[J]. PeerJ, 2022, 10: e13895. doi:10.7717/peerj.13895
|
| [20] |
Sun X, Nakajima E, Norbrun C, et al. Chitinase 3 like 1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension[J]. JCI Insight, 2022, 7(18): e159578. doi:10.1172/jci.insight.159578
|
| [21] |
Pullamsetti SS, Savai R, Seeger W, et al. Translational advances in the field of pulmonary hypertension. from cancer biology to new pulmonary arterial hypertension therapeutics. targeting cell growth and proliferation signaling hubs[J]. Am J Respir Crit Care Med, 2017, 195(4): 425-37. doi:10.1164/rccm.201606-1226pp
|
| [22] |
Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension: pathogenesis and clinical management[J]. BMJ, 2018, 360: j5492. doi:10.1136/bmj.j5492
|
| [23] |
Song Y, Jia H, Ma Q, et al. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective[J]. Front Physiol, 2024, 15: 1461519. doi:10.3389/fphys.2024.1461519
|
| [24] |
Yang Q, Jankowsky E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1[J]. Biochemistry, 2005, 44(41): 13591-601. doi:10.1021/bi0508946
|
| [25] |
Xing Z, Ma WK, Tran EJ. The DDX5/Dbp2 subfamily of DEAD-box RNA helicases[J]. Wiley Interdiscip Rev RNA, 2019, 10(2): e1519. doi:10.1002/wrna.1519
|
| [26] |
Kay BK, Williamson MP, Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains[J]. FASEB J, 2000, 14(2): 231-41. doi:10.1096/fasebj.14.2.231
|
| [27] |
Mori M, Triboulet R, Mohseni M, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer[J]. Cell, 2014, 156(5): 893-906. doi:10.1016/j.cell.2013.12.043
|
| [28] |
Sun Q, Chen X, Ma J, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J]. Proc Natl Acad Sci USA, 2011, 108(10): 4129-34. doi:10.1073/pnas.1014769108
|
| [29] |
Yang Q, Guan KL. Expanding mTOR signaling[J]. Cell Res, 2007, 17(8): 666-81. doi:10.1038/cr.2007.64
|
| [30] |
Ayuk SM, Abrahamse H. mTOR signaling pathway in cancer targets photodynamic therapy in vitro [J]. Cells, 2019, 8(5): E431. doi:10.3390/cells8050431
|
| [31] |
Houssaini A, Abid S, Derumeaux G, et al. Selective tuberous sclerosis complex 1 gene deletion in smooth muscle activates mammalian target of rapamycin signaling and induces pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2016, 55(3): 352-67. doi:10.1165/rcmb.2015-0339oc
|
| [32] |
He Y, Zuo C, Jia D, et al. Loss of DP1 aggravates vascular remodeling in pulmonary arterial hypertension via mTORC1 signaling[J]. Am J Respir Crit Care Med, 2020, 201(10): 1263-76. doi:10.1164/rccm.201911-2137oc
|
| [33] |
Goncharova EA, Simon MA, Yuan JX. mTORC1 in pulmonary arterial hypertension. At the crossroads between vasoconstriction and vascular remodeling [J] ?Am J Respir Crit Care Med, 2020, 201(10): 1177-9. doi:10.1164/rccm.202001-0087ed
|
| [34] |
Tang HY, Wu K, Wang J, et al. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension[J]. JACC Basic Transl Sci, 2018, 3(6): 744-62. doi:10.1016/j.jacbts.2018.08.009
|
| [35] |
Wang G, Chen L, Lei X, et al. Role of FLCN phosphorylation in insulin-mediated mTORC1 activation and tumorigenesis[J]. Adv Sci: Weinh, 2023, 10(17): e2206826. doi:10.1002/advs.202206826
|
| [36] |
Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40[J]. Nature, 2017, 552(7685): 368-73. doi:10.1038/nature25023
|
| [37] |
Lai M, Zou W, Han Z, et al. Tsc1 regulates tight junction independent of mTORC1[J]. Proc Natl Acad Sci USA, 2021, 118(30): e2020891118. doi:10.1073/pnas.2020891118
|