南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (7): 1460-1470.doi: 10.12122/j.issn.1673-4254.2025.07.12

• • 上一篇    下一篇

雷氏大疣蛛多肽毒素组分通过激活促凋亡通路和协同作用抑制癌细胞增殖

谢婷(), 王云云, 郭婷, 袁春华()   

  1. 南方医科大学基础医学院神经生物学教研室,粤港澳大湾区脑科学与类脑研究中心,广东 广州 510515
  • 收稿日期:2025-04-01 出版日期:2025-07-20 发布日期:2025-07-17
  • 通讯作者: 袁春华 E-mail:424464387@qq.com;yuanch@smu.edu.cn
  • 作者简介:谢 婷,硕士,教师,E-mail: 424464387@qq.com
  • 基金资助:
    国家重点研发计划(2023YFC3504304)

The peptide toxin components and nucleotide metabolites in Macrothele raveni venom synergistically inhibit cancer cell proliferation by activating the pro-apoptotic pathways

Ting XIE(), Yunyun WANG, Ting GUO, Chunhua YUAN()   

  1. Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China
  • Received:2025-04-01 Online:2025-07-20 Published:2025-07-17
  • Contact: Chunhua YUAN E-mail:424464387@qq.com;yuanch@smu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFC3504304)

摘要:

目的 研究雷氏大疣蛛毒素对癌细胞增殖抑制的选择性和有效组分。 方法 采用CCK-8法检测共培养48 h后雷氏大疣蛛毒素对癌细胞增殖的影响;应用流式细胞术检测癌细胞凋亡率;采用caspase试剂盒检测癌细胞内caspase-8和9的表达水平;通过凝胶过滤层析和高效液相色谱(HPLC)将雷氏大疣蛛粗毒分为蛋白质组分、多肽组分、小分子化合物组分3个部分;通过蛋白质组学对蛋白质和多肽组分进行鉴定;采用核磁共振、质谱结合HPLC解析小分子化合物组分中各物质的结构。 结果 雷氏大疣蛛粗毒对乳腺癌MCF7和鼻咽癌(SUNE1、HONE1)细胞表现出很强的浓度依赖性增殖抑制作用,半抑制浓度(IC50)分别为2.14 ±0.29、1.57±0.14、2.85±0.15 µg/mL;对多种胃癌和肠癌细胞系表现出较强的增殖抑制作用,对胃癌HGC27细胞的IC50为3.02±0.27 µg/mL,对肠癌SW620细胞的IC50为3.02±0.28 µg/mL。选用MCF7细胞来研究增殖抑制机制和筛选有效组分,发现粗毒可能通过激活caspase-8介导的信号通路诱导MCF7细胞凋亡。粗毒中蛋白质组分对MCF7细胞的增殖抑制作用很弱,10 µg/mL浓度仅抑制12.1%±1.9%。多肽组分抑制作用较强,IC50为6.41±0.31 µg/mL。多肽组分相对分子质量集中在10 000左右,主要为与巨型上户蛛毒素同源的多肽;小分子组分未表现出增殖抑制作用,主要为核苷酸代谢物。多肽组分和小分子组分质量比4∶1混合抑制作用明显增强。 结论 雷氏大疣蛛毒素对不同癌细胞的抑制活性有很大差异,发挥对癌细胞增殖抑制作用的组分为多肽组分,可能与核苷酸代谢物存在协同作用。

关键词: 雷氏大疣蛛, 多肽毒素, 癌细胞, 抗增殖作用

Abstract:

Objective To evaluate the inhibitory effect of Macrothele raveni crude venom against proliferation of different cancer cells and identify the active components in the venom. Methods Different cancer cell lines were treated with different concentrations of Macrothele raveni venom for 48 h, and cell proliferation and the half-maximal inhibitory concentrations (IC50) of the venom were assessed with CCK-8 assay. The apoptosis rate of breast cancer MCF7 cells following the treatment was analyzed with flow cytometry, and the changes in cellular caspase-8 and caspase-9 expressions were detected. The crude venom was separated into protein, peptide, and small-molecule compound fractions using gel filtration chromatography and high-performance liquid chromatography (HPLC). The protein and peptide components were identified using proteomics analysis, and small-molecule compounds were structurally characterized using nuclear magnetic resonance (NMR), mass spectrometry (MS), and HPLC. Results The crude venom exhibited strong concentration-dependent inhibitory effects on proliferation of MCF7 cells and nasopharyngeal carcinoma SUNE1 and HONE1 cells (IC50 of 2.14±0.29, 1.57±0.14, and 2.85±0.15 µg/mL, respectively), with less potent inhibitory effects in gastric cancer HGC27 cells and colorectal cancer SW620 cells (IC50 of 3.02±0.27 and 3.02±0.28 µg/mL, respectively). The crude venom significantly promoted MCF7 cell apoptosis likely via the caspase 8 signaling pathway. The protein fraction from the crude venom showed a weak inhibitory effect in MCF7 cells, whereas the peptide fraction exhibited a much stronger inhibitory effect (IC50 of 6.41±0.31 µg/mL). The peptides in the peptide fraction, with relative molecular mass around 10 000, were homologous to those found in Macrothele gigas venom. The small-molecule fraction consisted mainly of nucleotide metabolites without obvious inhibitory effects in MCF7 cells, but its combination with the peptide fraction showed significantly enhanced inhibitory activity. Conclusion The inhibitory effects of Macrothele raveni venom, which vary significantly across different cancer cell lines, are attributed primarily to its peptide components, which may act synergistically with the nucleotide metabolites.

Key words: Macrothele raveni, peptide toxins, cancer cells, anti-proliferation