| [1] |
Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-3. doi:10.1016/j.redox.2015.01.002
|
| [2] |
Sies H. Oxidative stress: concept and some practical aspects[J]. Antioxidants (Basel), 2020, 9(9): 852. doi:10.3390/antiox9090852
|
| [3] |
Shaito A, Aramouni K, Assaf R, et al. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases[J]. Front Biosci (Landmark Ed), 2022, 27(3): 105. doi:10.31083/j.fbl2703105
|
| [4] |
Mani S, Dubey R, Lai IC, et al. Oxidative stress and natural antioxidants: back and forth in the neurological mechanisms of Alzheimer’s disease[J]. J Alzheimers Dis, 2023, 96(3): 877-912. doi:10.3233/jad-220700
|
| [5] |
Houldsworth A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants[J]. Brain Commun, 2024, 6(1): fcad356. doi:10.1093/braincomms/fcad356
|
| [6] |
Ryan A, Murphy M, Godson C, et al. Diabetes mellitus and apoptosis: inflammatory cells[J]. Apoptosis, 2009, 14(12): 1435-50. doi:10.1007/s10495-009-0340-z
|
| [7] |
Zhang PJ, Li T, Wu XY, et al. Oxidative stress and diabetes: antioxidative strategies[J]. Front Med, 2020, 14(5): 583-600. doi:10.1007/s11684-019-0729-1
|
| [8] |
Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development[J]. Lancet, 2012, 379(9833): 2279-90. doi:10.1016/s0140-6736(12)60283-9
|
| [9] |
Liu YY, Tran DQ, Rhoads JM. Probiotics in disease prevention and treatment[J]. J Clin Pharmacol, 2018, 58(): S164-79. doi:10.1002/jcph.1121
|
| [10] |
Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review[J]. Gut Microbes, 2020, 12(1): 1801944. doi:10.1080/19490976.2020.1801944
|
| [11] |
尹龙杰, 张 雨, 陈舒焕, 等. 鼠李糖乳杆菌GG对大鼠脂多糖应激下抗氧化能力、免疫功能和肠道健康的影响[J]. 饲料工业, 2024, 45(9): 93-100.
|
| [12] |
周先容, 谭 仟, 母健菲, 等. 泡菜源乳酸菌的分离筛选及其对小鼠氧化应激水平的改善作用[J]. 现代食品科技, 2020, 36(9): 17-25.
|
| [13] |
李 月, 闫 薇, 姜 斌, 等. 植物乳植杆菌H8对小鼠氧化损伤的作用机制[J]. 食品科学技术学报, 2024, 42(5): 93-103.
|
| [14] |
Wang L, Zhao ZJ, Zhao L, et al. Lactobacillus plantarum DP189 reduces α-SYN aggravation in MPTP-induced Parkinson’s disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder[J]. J Agric Food Chem, 2022, 70(4): 1163-73. doi:10.1021/acs.jafc.1c07711
|
| [15] |
He J, Zhang PW, Shen LY, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17): 6356. doi:10.3390/ijms21176356
|
| [16] |
Xu R, Wang T, Ding FF, et al. Lactobacillus plantarum ameliorates high-carbohydrate diet-induced hepatic lipid accumulation and oxidative stress by upregulating uridine synthesis[J]. Antioxidants (Basel), 2022, 11(7): 1238. doi:10.3390/antiox11071238
|
| [17] |
Li ZH, Shi YQ, Zhang XH, et al. Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays[J]. Front Pharmacol, 2020, 11: 287. doi:10.3389/fphar.2020.00287
|
| [18] |
Zhao WC, Chen YN, Hu N, et al. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: a review based on bibliometrics[J]. Ecotoxicol Environ Saf, 2024, 272: 116023. doi:10.1016/j.ecoenv.2024.116023
|
| [19] |
Hu CW, Sun L, Chen JQ, et al. Advantages of the zebrafish tumor xenograft model: the evaluation of efficacy in cancer therapy and the application to the study of lncRNAs[J]. Front Immunol, 2024, 15: 1483192. doi:10.3389/fimmu.2024.1483192
|
| [20] |
Zhang Y, Xia Q, Wang JB, et al. Progress in using zebrafish as a toxicological model for traditional Chinese medicine[J]. J Ethnopharmacol, 2022, 282: 114638. doi:10.1016/j.jep.2021.114638
|
| [21] |
Chowdhury S, Saikia SK. Use of zebrafish as a model organism to study oxidative stress: a review[J]. Zebrafish, 2022, 19(5): 165-76. doi:10.1089/zeb.2021.0083
|
| [22] |
Subba R, Fasciolo G, Geremia E, et al. Simultaneous induction of systemic hyperglycaemia and stress impairs brain redox homeostasis in the adult zebrafish[J]. Arch Biochem Biophys, 2024, 759: 110101. doi:10.1016/j.abb.2024.110101
|
| [23] |
Li YQ, Chen QQ, Liu YN, et al. High glucose-induced ROS-accumulation in embryo-larval stages of zebrafish leads to mitochondria-mediated apoptosis[J]. Apoptosis, 2022, 27(7/8): 509-20. doi:10.1007/s10495-022-01731-2
|
| [24] |
Weinberg Sibony R, Segev O, Dor S, et al. Overview of oxidative stress and inflammation in diabetes[J]. J Diabetes, 2024, 16(10): e70014. doi:10.1111/1753-0407.70014
|
| [25] |
He BL, Hu TG, Wu H. Phenotypic screening of novel probiotics with potential anti-neuroinflammation activity based on cell and zebrafish models[J]. Food Biosci, 2023, 55: 102949. doi:10.1016/j.fbio.2023.102949
|
| [26] |
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi:10.1080/19490976.2015.1134082
|
| [27] |
Jeong JJ, Ganesan R, Jin YJ, et al. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats[J]. Front Microbiol, 2023, 14: 1174968. doi:10.3389/fmicb.2023.1174968
|
| [28] |
Cuciniello R, Di Meo F, Filosa S, et al. The antioxidant effect of dietary bioactives arises from the interplay between the physiology of the host and the gut microbiota: involvement of short-chain fatty acids[J]. Antioxidants (Basel), 2023, 12(5): 1073. doi:10.3390/antiox12051073
|
| [29] |
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-95. doi:10.1038/s41577-024-01014-8
|
| [30] |
Wang YM, Dilidaxi D, Wu YC, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J]. Biomed Pharmacother, 2020, 125: 109914. doi:10.1016/j.biopha.2020.109914
|
| [31] |
Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, et al. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study[J]. Clin Nutr, 2017, 36(1): 85-92. doi:10.1016/j.clnu.2015.11.011
|