| 1 | 
																						 
											 Sun BS, Lei MX, Zhang JQ, et al. Acute lung injury caused by sepsis: how does it happen[J]? Front Med, 2023, 10: 1289194.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Li WL, Li D, Chen YS, et al. Classic signaling pathways in alveolar injury and repair involved in sepsis-induced ALI/ARDS: new research progress and prospect[J]. Dis Markers, 2022, 2022: 6362344.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Wang YF, Zhao ZJ, Xiao ZY. The emerging roles of ferroptosis in pathophysiology and treatment of acute lung injury[J]. J Inflamm Res, 2023, 16: 4073-85.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Huo L, Liu CF, Yuan YJ, et al. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage[J]. Eur J Med Chem, 2023, 257: 115438.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Zhang J, Zheng YP, Wang Y, et al. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis[J]. Front Immunol, 2022, 13: 884362.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Zhang XY, Liu CM, Ma YH, et al. The TXNIP/Trx-1/GPX4 pathway promotes ferroptosis in hippocampal neurons after hypoxia-ischemia in neonatal rats[J]. Chin J Contemp Pediatr, 2022, 24(9): 1053-60.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Sadeghi M, Dehnavi S, Asadirad A, et al. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases[J]. Inflammopharmacology, 2023, 31(3): 1069-93.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Wang Y, Wang YJ, Cai N, et al. Anti-inflammatory effects of curcumin in acute lung injury: in vivo and in vitro experimental model studies[J]. Int Immunopharmacol, 2021, 96: 107600.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Yuan R, Li YQ, Han S, et al. Fe-curcumin nanozyme-mediated reactive oxygen species scavenging and anti-inflammation for acute lung injury[J]. ACS Cent Sci, 2022, 8(1): 10-21.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Zheng YX, Wang JP, Ling ZY, et al. A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications[J]. J Transl Med, 2023, 21(1): 620.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Tao HP, Shen LH. Research progress of curcumin in the treatment of sepsis[J]. Shock, 2024, 61(6): 805-16.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Liu RF, Fang XH, Meng C, et al. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats[J]. Exp Biol Med, 2015, 240(9): 1214-22.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Zhou X, Liao YX. Gut-lung crosstalk in sepsis-induced acute lung injury[J]. Front Microbiol, 2021, 12: 779620.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Zhang H, Liu JL, Zhou YL, et al. Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells[J]. Int J Biol Sci, 2022, 18(8): 3337-57.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Wang W, Xu RL, He P, et al. CircEXOC5 aggravates sepsis-induced acute lung injury by promoting ferroptosis through the IGF2BP2/ATF3 axis[J]. J Infect Dis, 2024, 229(2): 522-34.
											 											 | 
										
																													
																						| 17 | 
																						 
											 Ahmad S, Zaki A, Manda K, et al. Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress[J]. J Nutr Biochem, 2022, 110: 109130.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4):266-82.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Shi X, Han B, Zhang B, et al. Schisandra chinensis polysaccharides prevent cardiac hypertrophy by dissociating thioredoxin-interacting protein/thioredoxin-1 complex and inhibiting oxidative stress[J]. Biomed Pharmacother, 2021, 139:111688.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Lv HM, Zhu C, Wei W, et al. Enhanced Keap1-Nrf2/Trx-1 axis by daphnetin protects against oxidative stress-driven hepatotoxicity via inhibiting ASK1/JNK and Txnip/NLRP3 inflammasome activation[J]. Phytomedicine, 2020, 71: 153241.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55(7): 1348-56.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Chen YF, Yin HW, Sun J, et al. TrxR/Trx inhibitor butaselen ameliorates pulmonary fibrosis by suppressing NF‑κB/TGF‑β1/Smads signaling[J]. Biomedecine Pharmacother, 2023, 169: 115822.
											 											 | 
										
																													
																						| 23 | 
																						 
											 周 滟, 李晓茜, 汪思琴. 血清OSM、Trx-1及HBP与脓毒症严重程度相关性及对临床转归的预测研究[J].临床和实验医学杂志, 2024, 23(5): 473-7.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Shen K, Wang XJ, Wang YW, et al. MiR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023, 62: 102655.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Kumar A, Harsha C, Parama D, et al. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases[J]. Phytother Res, 2021, 35(12): 6768-801.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Shi Y, Wu Q, Lu Y, et al. Arginine-Glycine-aspartic acid-anchored curcumin-based nanotherapeutics inhibit pyroptosis-induced cytokine release syndrome for in vivo and in vitro sepsis applications[J]. Curr Pharm Des, 2023, 29(4): 283-94.
											 											 | 
										
																													
																						| 27 | 
																						 
											 Ahmadabady S, Beheshti F, Shahidpour F, et al. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats[J]. Biochem Biophys Rep, 2021, 25: 100908.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Zhou Y, Gao LP, Xia P, et al. Glycyrrhetinic acid protects renal tubular cells against oxidative injury via reciprocal regulation of JNK-connexin 43-thioredoxin 1 signaling[J]. Front Pharmacol, 2021, 12: 619567.
											 											 | 
										
																													
																						| 29 | 
																						 
											 Li WC, Xu XT, Dong DD, et al. Up-regulation of thioredoxin system by puerarin inhibits lipid uptake in macrophages[J]. Free Radic Biol Med, 2021, 162: 542-54.
											 											 | 
										
																													
																						| 30 | 
																						 
											 林全德, 闫 艳, 刘 晴, 等. PX-12促进硼替佐米诱导多发性骨髓瘤细胞H929凋亡的实验研究[J]. 中国实验血液学杂志, 2021, 29(2): 515-9.
											 											 | 
										
																													
																						| 31 | 
																						 
											 Lin Y, Chen XW, Yu CC, et al. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy[J]. Acta Biomater, 2023, 159: 300-11.
											 											 |