南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (12): 2434-2442.doi: 10.12122/j.issn.1673-4254.2024.12.20

• • 上一篇    

多模态多分类器融合模型预测放射性口腔黏膜炎的性能

胡玥1(), 曾玉2(), 王琳婧3, 廖志伟3, 谭剑明3, 邝燕好2, 龚攀2, 齐斌3, 甄鑫1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510515
    2.广州医科大学附属肿瘤医院 口腔科,广东 广州 510095
    3.广州医科大学附属肿瘤医院 放射肿瘤科,广东 广州 510095
  • 收稿日期:2024-09-06 出版日期:2024-12-20 发布日期:2024-12-26
  • 通讯作者: 曾玉,甄鑫 E-mail:huyue058@gmail.com;apple02180717@126.com;xinzhen@smu.edu.cn
  • 作者简介:胡 玥,在读硕士研究生,E-mail: huyue058@gmail.com
    第一联系人:胡 玥、曾 玉共同第一作者
  • 基金资助:
    国家自然科学基金(62106058);广东省自然科学基金(2024A1515012100);广州市科技计划项目(202201011662);广州市重点医学学科建设项目基金和广州市重点临床技术项目(20231A010060)

Performance of multi-modality and multi-classifier fusion models for predicting radiation-induced oral mucositis in patients with nasopharyngeal carcinoma

Yue HU1(), Yu ZENG2(), Linjing WANG3, Zhiwei LIAO3, Jianming TAN3, Yanhao KUANG2, Pan GONG2, Bin QI3, Xin ZHEN1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.Department of Stomatology
    3.Department of Radiation Oncology, Guangzhou Institute of Cancer Research, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, China
  • Received:2024-09-06 Online:2024-12-20 Published:2024-12-26
  • Contact: Yu ZENG, Xin ZHEN E-mail:huyue058@gmail.com;apple02180717@126.com;xinzhen@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62106058)

摘要:

目的 评估不同放射性口腔黏膜炎(RIOM)预测模型的性能,对比分析分层多模态多分类器融合(H-MCF)模型的有效性。 方法 回顾性收集2022年9月~2023年2月在广州医科大学附属肿瘤医院接受观察和治疗的198例放射性口腔黏膜炎局部晚期鼻咽癌患者的数据。基于口腔放射剂量-体积参数与鼻咽癌相关的临床特征,针对不同特征选择算法和分类器两两组合得到基础分类模型。我们使用基于多准则决策的多分类器融合模型(MCF)和它的变体——H-MCF模型对基础分类模型进行融合。通过对各个模态的基础分类模型与MCF模型的性能、多模态的基础模型和MCF模型以及H-MCF模型的性能、单模态与多模态模型的性能、H-MCF与MCF以及其他集成分类器的性能进行分析比较,并通过ROC曲线下面积(AUC)、准确率(ACC)、灵敏度(SEN)和特异度(SPE)4种评价指标来评估模型的泛化性能,分析 RIOM预测模型有效性。 结果 结合多模态特征后,H-MCF模型在预测严重RIOM方面达到了最高的准确性(AUC=0.883,ACC=0.850,SEN=0.933,SPE=0.800)。 结论 相较于单个分类器的预测结果,结合临床和剂量两种模态的多分类器融合算法在预测严重RIOM发病率方面表现更优。

关键词: 鼻咽癌, 放射性口腔黏膜炎, 人工智能, 多分类器, 多准则决策

Abstract:

Objective To evaluate the performance of different multi-modality fusion models for predicting radiation-induced oral mucositis (RIOM) following radiotherapy in patients with nasopharyngeal carcinoma (NPC). Methods We retrospectively collected the data from 198 patients with locally advanced NPC who experienced RIOM following radiotherapy at the Affiliated Tumor Hospital of Guangzhou Medical University from September, 2022 to February, 2023. Based on oral radiation dose-volume parameters and clinical features of NPC, basic classification models were developed using different combinations of feature selection algorithms and classifiers and integrated using a multi-criterion decision-making (MCDM)-based classifier fusion (MCF) strategy and its variant, the H-MCF model. The basic classification models, MCF model, the H-MCF model with a single modality or multiple modalities and other ensemble classifiers were compared for performances for predicting RIOM by assessing the area under the ROC curve (AUC), accuracy, sensitivity, and specificity. Results The H-MCF model, which integrated multi-modality features, achieved the highest accuracy for predicting severe RIOM with an AUC of 0.883, accuracy of 0.850, sensitivity of 0.933, and specificity of 0.800. Conclusion Compared with each of the individual classifiers, the multimodal multi-classifier fusion algorithm combining clinical and dosimetric modalities demonstrates superior performance in predicting the incidence of severe RIOM in NPC patients following radiotherapy.

Key words: nasopharyngeal carcinoma, radiation-induced oral mucositis, artificial intelligence, multi classifier, multi-criterion decision-making