南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (3): 632-642.doi: 10.12122/j.issn.1673-4254.2025.03.21

• • 上一篇    

基于多尺度监督与残差反馈的优化算法有效提高鼻咽癌CT图像视交叉及视神经分割精度

刘瑨禹(), 梁淑君(), 张煜()   

  1. 南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515
  • 收稿日期:2024-07-06 出版日期:2025-03-20 发布日期:2025-03-28
  • 通讯作者: 梁淑君,张煜 E-mail:1377981055@qq.com;390611257@qq.com;yuzhang@smu.edu.cn
  • 作者简介:刘瑨禹,在读硕士研究生,E-mail: 1377981055@qq.com
  • 基金资助:
    国家自然科学基金(U22A20350);广州市科技计划项目(2023A04J2262)

A multi-scale supervision and residual feedback optimization algorithm for improving optic chiasm and optic nerve segmentation accuracy in nasopharyngeal carcinoma CT images

Jinyu LIU(), Shujun LIANG(), Yu ZHANG()   

  1. School of Biomedical Engineering//Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China
  • Received:2024-07-06 Online:2025-03-20 Published:2025-03-28
  • Contact: Shujun LIANG, Yu ZHANG E-mail:1377981055@qq.com;390611257@qq.com;yuzhang@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U22A20350)

摘要:

目的 提出并验证一种新的基于多尺度监督与残差反馈的深度学习分割算法(DSRF),以实现对鼻咽癌患者CT图像中小器官-视交叉和视神经的精确分割。 方法 收集来自SegRap2023、StructSeg2019和HaN-Seg2023公开数据库的212例鼻咽癌患者CT图像及其真实标签。为解决传统卷积神经网络在池化过程中小器官特征丢失的问题,设计一种基于混合池化策略的解码器,利用自适应池化和平均池化技术将高级语义特征逐步细化并融合低级语义特征,使网络学习到更细小的特征信息。采用多尺度深度监督层,在深度监督下学习丰富的多尺度、多层次语义特征,以提高对视交叉和视神经边界的识别能力。针对CT图像中视交叉和视神经对比度低的挑战,设计可使网络多次迭代的残差反馈模块,该模块充分利用模糊边界和易混淆区域的信息,通过监督迭代细化分割结果,并结合每次迭代的损失优化整个分割框架,提高分割精度和边界清晰度。采用消融实验验证各组件的有效性,并与其他方法进行对比实验。 结果 引入混合池化策略、多尺度深度监督层和残差反馈模块的DSRF算法能有效提升小器官的特征表示,实现视交叉和视神经的准确分割,其平均DSC达到0.837,ASSD低至0.351。消融实验进一步验证DSRF方法中各组成部分的贡献。 结论 本文提出的基于多尺度监督及残差反馈的深度学习分割算法能有效提升特征表示能力,实现视交叉和视神经准确分割。

关键词: 鼻咽癌, 视交叉与视神经分割, 混合池化策略, 深度监督, 残差反馈

Abstract:

Objective We propose a novel deep learning segmentation algorithm (DSRF) based on multi-scale supervision and residual feedback strategy for precise segmentation of the optic chiasm and optic nerves in CT images of nasopharyngeal carcinoma (NPC) patients. Methods We collected 212 NPC CT images and their ground truth labels from SegRap2023, StructSeg2019 and HaN-Seg2023 datasets. Based on a hybrid pooling strategy, we designed a decoder (HPS) to reduce small organ feature loss during pooling in convolutional neural networks. This decoder uses adaptive and average pooling to refine high-level semantic features, which are integrated with primary semantic features to enable network learning of finer feature details. We employed multi-scale deep supervision layers to learn rich multi-scale and multi-level semantic features under deep supervision, thereby enhancing boundary identification of the optic chiasm and optic nerves. A residual feedback module that enables multiple iterations of the network was designed for contrast enhancement of the optic chiasm and optic nerves in CT images by utilizing information from fuzzy boundaries and easily confused regions to iteratively refine segmentation results under supervision. The entire segmentation framework was optimized with the loss from each iteration to enhance segmentation accuracy and boundary clarity. Ablation experiments and comparative experiments were conducted to evaluate the effectiveness of each component and the performance of the proposed model. Results The DSRF algorithm could effectively enhance feature representation of small organs to achieve accurate segmentation of the optic chiasm and optic nerves with an average DSC of 0.837 and an ASSD of 0.351. Ablation experiments further verified the contributions of each component in the DSRF method. Conclusion The proposed deep learning segmentation algorithm can effectively enhance feature representation to achieve accurate segmentation of the optic chiasm and optic nerves in CT images of NPC.

Key words: nasopharyngeal carcinoma, optic chiasm and optic nerve segmentation, hybrid pooling strategy, deep supervision, residual feedback