1 |
Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79(2): 516-37.
|
2 |
Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis[J]. Lancet, 2021, 398(10308): 1359-76.
|
3 |
Younossi ZM, Wong G, Anstee QM, et al. The global burden of liver disease[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 1978-91.
|
4 |
GBD Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2018, 392(10152): 1015-35.
|
5 |
Zhai MM, Long JH, Liu SS, et al. The burden of liver cirrhosis and underlying etiologies: results from the global burden of disease study 2017[J]. Aging, 2021, 13(1): 279-300.
|
6 |
Allen AM, Kim WR, Moriarty JP, et al. Time trends in the health care burden and mortality of acute on chronic liver failure in the United States[J]. Hepatology, 2016, 64(6): 2165-72.
|
7 |
Fabrellas N, Moreira R, Carol M, et al. Psychological burden of hepatic encephalopathy on patients and caregivers[J]. Clin Transl Gastroenterol, 2020, 11(4): e00159.
|
8 |
Arroyo V, Moreau R, Jalan R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-45.
|
9 |
Zhang DY, Zhang YG, Sun B. The molecular mechanisms of liver fibrosis and its potential therapy in application[J]. Int J Mol Sci, 2022, 23(20): 12572.
|
10 |
Mannaerts I, Leite SB, Verhulst S, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation[J]. J Hepatol, 2015, 63(3): 679-88.
|
11 |
Martin K, Pritchett J, Llewellyn J, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis[J]. Nat Commun, 2016, 7: 12502.
|
12 |
Grijalva JL, Huizenga M, Mueller K, et al. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(2): G196-G204.
|
13 |
Machado MV, Michelotti GA, Pereira TA, et al. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 63(4): 962-70.
|
14 |
Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge[J]. Front Med, 2015, 2: 59.
|
15 |
Swiderska-Syn M, Xie GH, Michelotti GA, et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver[J]. Hepatology, 2016, 64(1): 232-44.
|
16 |
Grannas K, Arngården L, Lönn P, et al. Crosstalk between hippo and TGFβ: subcellular localization of YAP/TAZ/smad complexes[J]. J Mol Biol, 2015, 427(21): 3407-15.
|
17 |
Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications[J]. Mol Cancer, 2016, 15: 18.
|
18 |
Xie GH, Diehl AM. Evidence for and against epithelial-to-mesenchymal transition in the liver[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G881-90.
|
19 |
Zhao W, Zhang XX, Hou MM, et al. Traditional Chinese medicine Yiqi Huoxue recipe attenuates hepatic fibrosis via YAP/TAZ signaling[J]. Histol Histopathol, 2021, 36(9): 967-79.
|
20 |
Zhao W, Lei M, Li JF, et al. Yes-associated protein inhibition ameliorates liver fibrosis and acute and chronic liver failure by decreasing ferroptosis and necroptosis[J]. Heliyon, 2023, 9(4): e15075.
|
21 |
Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-73.
|
22 |
Mizutani A, Koinuma D, Tsutsumi S, et al. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells[J]. J Biol Chem, 2011, 286(34): 29848-60.
|
23 |
Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis[J]. Hepatology, 2011, 53(1): 106-15.
|
24 |
Xie GH, Karaca G, Swiderska-Syn M, et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice[J]. Hepatology, 2013, 58(5): 1801-13.
|
25 |
Xu XC, Zhang Y, Wang X, et al. Substrate stiffness drives epithelial to mesenchymal transition and proliferation through the NEAT1-wnt/β-catenin pathway in liver cancer[J]. Int J Mol Sci, 2021, 22(21): 12066.
|
26 |
Zhang K, Zhang MX, Yao QB, et al. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition[J]. Theranostics, 2019, 9(25): 7566-82.
|
27 |
Ma SH, Meng ZP, Chen R, et al. The hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604.
|
28 |
Zhan YT, Tao QQ, Meng QS, et al. LncRNA-MIAT activates hepatic stellate cells via regulating Hippo pathway and epithelial-to-mesenchymal transition[J]. Commun Biol, 2023, 6(1): 285.
|
29 |
Oh SH, Swiderska-Syn M, Jewell ML, et al. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes[J]. J Hepatol, 2018, 69(2): 359-67.
|
30 |
Ge WS, Wang YJ, Wu JX, et al. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β‑catenin signaling inhibits hepatic stellate cell activation[J]. Mol Med Rep, 2014, 9(6): 2145-51.
|
31 |
Dong WH, Kong M, Zhu YW, et al. Activation of TWIST transcription by chromatin remodeling protein BRG1 contributes to liver fibrosis in mice[J]. Front Cell Dev Biol, 2020, 8: 340.
|
32 |
Yang XX, Ma LP, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-β pathway[J]. Signal Transduct Target Ther, 2020, 5(1): 75.
|
33 |
Luo XF, Zhang R, Schefczyk S, et al. Nuclear translocation of YAP drives BMI-associated hepatocarcinogenesis in hepatitis B virus infection[J]. Liver Int, 2023, 43(9): 2002-16.
|
34 |
Abdallah RA, Shaban MI, Taie DM, et al. Relation between immunohistochemical expression of hippo pathway effectors and chronic hepatitis induced fibrosis in Egyptian patients[J]. Turk Patoloji Derg, 2020, 36(1): 48-63.
|
35 |
Zhou ZX, Zhang RR, Li XM, et al. Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade[J]. Commun Biol, 2024, 7(1): 113.
|