南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (8): 1459-1466.doi: 10.12122/j.issn.1673-4254.2024.08.04
• • 上一篇
收稿日期:
2024-04-12
出版日期:
2024-08-20
发布日期:
2024-09-06
通讯作者:
王剑锋
E-mail:1345392841@qq.com;7852978@qq.com
作者简介:
朱梦云,硕士,住院医师,E-mail: 1345392841@qq.com
基金资助:
Mengyun ZHU1(), Jianfeng WANG2()
Received:
2024-04-12
Online:
2024-08-20
Published:
2024-09-06
Contact:
Jianfeng WANG
E-mail:1345392841@qq.com;7852978@qq.com
摘要:
目的 探讨康柏西普(conbercept)对转化生长因子-β2(TGF-β2)诱导人晶状体上皮细胞(HLECs)发生上皮间质转化(EMT)的逆转机制。 方法 体外培养HLEC-SRA01/04细胞并分为对照组、TGF-β2组、conbercept组、TGF-β2+conbercept组。采用MTT法、流式细胞术、划痕实验、Transwell检测细胞增殖、凋亡与迁移,Western blotting 和qRT-PCR 检测EMT相关上皮细胞标记物E-Cadherin、α-SMA、snail、细胞外基质和TGF-β/Smad信号通路相关基因的表达。 结果 TGF-β2+conbercept组EMT程度明显减轻,细胞间充质及细胞外基质标志物α-SMA、snail、collagen Ⅰ、collagen Ⅳ、FN1的表达量均明显减少,与TGF-β2组的差异有统计学意义(P<0.05)。上皮细胞相关标志物E-Cadherin的蛋白及mRNA的表达上调(P<0.05)。Transwell结果显示,与TGF-β2组相比,TGF-β2+conbercept组细胞迁移能力减弱(P<0.05)。此外,TGF-β2诱导HLEC-SRA01/04细胞发生EMT过程中发生Smad2/3磷酸化水平升高现象可被康柏西普抑制(P<0.01)。 结论 康柏西普可能通过TGF-β/Smad信号通路抑制HLEC-SRA01/04细胞EMT过程,具有预防及治疗PCO的能力。
朱梦云, 王剑锋. 康柏西普可逆转TGF-β2诱导的晶状体上皮细胞发生上皮间质转化:基于调节TGF-β/Smad信号通路[J]. 南方医科大学学报, 2024, 44(8): 1459-1466.
Mengyun ZHU, Jianfeng WANG. Conbercept reverses TGF‑β2-induced epithelial-mesenchymal transition in human lens epithelial cells by regulating the TGF-β/Smad signaling pathway[J]. Journal of Southern Medical University, 2024, 44(8): 1459-1466.
Gene | Forward primer | Reverse primer |
---|---|---|
E-cadherin | GAAGTGTCCGAGGACTTTGG | CAGTGTCTCTCCAAATCCGATA |
Snail | CGGAAGCCTAACTACAGCGA | GGACAGAGTCCCAGATGAGC |
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
α-SMA | ATAGACATGCCGCCCTTCTT | GGCATCAAGGTACCCACAGA |
FN1 | AAGACCAGCAGAGGCATAAGG | TGTAGGGGTCAAAGCACGAG |
Collagen Ⅰ | TTGAGTTGTATCGTGTGGTG | AGAAGATGAAAATGAGACTG |
Collagen Ⅳ | TAGAGAGGAGCGAGATGTTC | GTGACATTAGCTGAGTCAGG |
表1 引物序列
Tab.1 The sequences of primer
Gene | Forward primer | Reverse primer |
---|---|---|
E-cadherin | GAAGTGTCCGAGGACTTTGG | CAGTGTCTCTCCAAATCCGATA |
Snail | CGGAAGCCTAACTACAGCGA | GGACAGAGTCCCAGATGAGC |
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
α-SMA | ATAGACATGCCGCCCTTCTT | GGCATCAAGGTACCCACAGA |
FN1 | AAGACCAGCAGAGGCATAAGG | TGTAGGGGTCAAAGCACGAG |
Collagen Ⅰ | TTGAGTTGTATCGTGTGGTG | AGAAGATGAAAATGAGACTG |
Collagen Ⅳ | TAGAGAGGAGCGAGATGTTC | GTGACATTAGCTGAGTCAGG |
图1 康柏西普对HLEC-SRA01/04细胞存活率的影响
Fig.1 Effects of conbercept on survival rate of lens epithelial cell line HLEC-SRA01/04. *P<0.05 vs 0 mg/mL at the same time point; #P<0.05 vs same concentration for 24 h; &P<0.05 vs the same concentration for 48 h.
图4 倒置显微镜观察TGF-β2诱导HLECs SRA01/04细胞形态变化
Fig.4 Inverted microscopy of morphological changes of human lens epithelial cells SRA01/04 induced by TGF-β2 (Scale bar=200 μm).
图5 TGF-β2诱导HLEC-SRA01/04发生EMT过程
Fig.5 TGF-β2 at 10 ng/mL for 24 h induces EMT of human lens epithelial cells SRA01/04 cells. A: Expression level of E-cadherin after TGF-β2 treatment detected by qRT-PCR. B: Expression level of α-SMA after TGF-β2 treatment detected by qRT-PCR. C: Expression level of Snail after TGF-β2 treatment detected by qRT-PCR. *P<0.05, **P<0.01 vs control.
图6 Western blotting检测TGF-β2诱导HLEC-SRA01/04细胞成EMT模型
Fig.6 Western blotting for detecting TGF-β2-induced EMT in HLEC-SRA01/04 cells treated with TGF-β2 for 24 h by detecting epithelial cell markers E-cadherin and mesenchymal cell markers α‑SMA and Snail. *P<0.05, **P<0.01 vs control.
图7 Western blotting检测康柏西普对TGF-β2诱导HLEC-SRA01/04的E-cadherin、α-SMA与snail的蛋白表达
Fig.7 Western blotting for detecting expressiona of E-cadherin, α-SMA and Snail in TGF-β2-induced HLEC-SRA01/04 cells after conbercept treatment. At least 3 replicates were performed in each experiment. **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs TGF-β2.
图9 康柏西普对TGF-β2诱导HLEC-SRA01/04的ECM基因表达的影响
Fig.9 Effect of conbercept on TGF-β2-induced expression of ECM genes in HLEC-SRA01/04 cells. A: Collagen I mRNA levels in cells treated with TGF-β2 and conbercept for 24 h detected by real-time PCR. B: FN1 mRNA levels in cells treated with TGF-β2 and conbercept for 24 h The mRNA levels. C: Collagen IV mRNA levels in cells treated with TGF-β2 and conbercept for 24 h. At least 3 replicates were performed in each experiment. **P<0.01, ***P<0.001 vs control; #P<0.05, ##P<0.01 vs TGF-β2.
图10 康柏西普对TGF-β2诱导HLEC-SRA01/04的细胞迁移能力的影响
Fig.10 Effects of conbercept on migration of SRA01/04 cells induced by TGF-β2. At least 3 replicates were performed in each experiment. Giemsa staining, Scale bar: 50 μm. ***P<0.001 vs control; ##P<0.01 vs TGF-β2.
图11 康柏西普抑制TGF-β2诱导HLEC-SRA01/04细胞的TGF-β/Smad信号通路
Fig.11 Conbercept inhibits TGF-β/Smad signaling pathway in SRA01/04 cells induced by TGF-β2. The expressions of Smad2/3 and p-Smad2/3 were detected by Western blotting. At least 3 replicates were performed in each experiment. **P<0.01 vs control; ##P<0.01 vs TGF-β2.
1 | Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: what's in the bag[J]? Prog Retin Eye Res, 2021, 82: 100905. |
2 | Fichtner JE, Patnaik J, Christopher KL, et al. Cataract inhibitors: present needs and future challenges[J]. Chem Biol Interact, 2021, 349: 109679. |
3 | Fișuș AD, Findl O. Capsular fibrosis: a review of prevention methods and management[J]. Eye, 2020, 34: 256-62. |
4 | Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract[J]. Exp Eye Res, 2016, 142: 92-101. |
5 | Trivedi RH, Wilson ME. Posterior capsule opacification in pediatric eyes with and without traumatic cataract[J]. J Cataract Refract Surg, 2015, 41(7): 1461-4. |
6 | Zhuravlyov A. Posterior YAG capsulotomy: selection of the application pattern[J]. Ophthalmologe, 2022, 119(5): 481-90. |
7 | Alon R, Assia EI, Kleinmann G. Prevention of posterior capsule opacification by an intracapsular open capsule device[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4005-13. |
8 | Eldred JA, McDonald M, Wilkes HS, et al. Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target[J]. Sci Rep, 2016, 6: 24453. |
9 | Zhao L, Wang JM, Zhang Y, et al. Vitamin C decreases VEGF expression levels via hypoxia-inducible factor-1α dependent and independent pathways in lens epithelial cells[J]. Mol Med Rep, 2020, 22(1): 436-44. |
10 | Bai J, Song ZH, Li GY, et al. Efficacy and safety of anti-vascular endothelial growth factor drugs for Coats' disease treatment: a systematic review[J]. J Ocul Pharmacol Ther, 2023, 39(7): 418-29. |
11 | Hang A, Feldman S, Amin AP, et al. Intravitreal anti-vascular endothelial growth factor therapies for retinal disorders[J]. Pharmaceuticals, 2023, 16(8): 1140. |
12 | Li YF, Ren Q, Sun CH, et al. Efficacy and mechanism of anti-vascular endothelial growth factor drugs for diabetic macular edema patients[J]. World J Diabetes, 2022, 13(7): 532-42. |
13 | Lindholm JM, Laine I, Tuuminen R. Five-year cumulative incidence and risk factors of Nd: YAG capsulotomy in 10 044 hydrophobic acrylic 1-piece and 3-piece intraocular lenses[J]. Am J Ophthalmol, 2019, 200: 218-23. |
14 | Zhang RP, Xie ZG. Research progress of drug prophylaxis for lens capsule opacification after cataract surgery[J]. J Ophthalmol, 2020, 2020: 2181685. |
15 | Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy[J]. Cent Eur J Immunol, 2016, 41(3): 311-6. |
16 | Yoon DY, Woo SJ. Intravitreal administration of ranibizumab and bevacizumab for choroidal neovascularization secondary to ocular toxocariasis: a case report[J]. Ocul Immunol Inflamm, 2018, 26(4): 639-41. |
17 | Kikushima W, Sakurada Y, Sugiyama A, et al. Retreatment of polypoidal choroidal vasculopathy after photodynamic therapy combined with intravitreal ranibizumab[J]. Jpn J Ophthalmol, 2017, 61(1): 61-6. |
18 | Yum S, Jeong S, Kim D, et al. Minoxidil induction of VEGF is mediated by inhibition of HIF-prolyl hydroxylase[J]. Int J Mol Sci, 2017, 19(1): 53. |
19 | Zhang Y, Xu Y, Ma J, et al. Adrenomedullin promotes angiogenesis in epithelial ovarian cancer through upregulating hypoxia-inducible factor-1α and vascular endothelial growth factor[J]. Sci Rep, 2017, 7: 40524. |
20 | Eldred JA, Spalton DJ, Wormstone IM. An in vitro evaluation of the Anew Zephyr open-bag IOL in the prevention of posterior capsule opacification using a human capsular bag model[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7057-64. |
21 | 赵洁文, 李明新. 康柏西普联合PDGF受体抑制剂对缺氧条件下视网膜色素上皮细胞增殖、迁移及VEGF表达的影响[J]. 眼科新进展, 2017, 37(12): 1127-31. |
22 | Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis[J]. Trends Cell Biol, 2000, 10(9): 369-77. |
23 | 崔双慧, 朱梦云, 郝泽宇, 等. 康柏西普对晶状体上皮细胞增殖的抑制作用及其相关机制[J]. 临床眼科杂志, 2021, 29(5): 457-60. |
24 | Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2): 156-72. |
25 | Bassey-Archibong BI, Kwiecien JM, Milosavljevic SB, et al. Kaiso depletion attenuates transforming growth factor‑β signaling and metastatic activity of triple-negative breast cancer cells[J]. Oncogenesis, 2016, 5(3): e208. |
26 | 于 童, 王 静, 张劲松. 上皮间充质转化在后囊膜下混浊中的研究进展[J]. 国际眼科杂志, 2019, 19(8): 1309-12. |
27 | Evans RA, Tian YC, Steadman R, et al. TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins[J]. Exp Cell Res, 2003, 282(2): 90-100. |
28 | Lin JH, Lee WJ, Wu HC, et al. Small G protein signalling modulator 2 (SGSM2) is involved in oestrogen receptor-positive breast cancer metastasis through enhancement of migratory cell adhesion via interaction with E-cadherin[J]. Cell Adh Migr, 2019, 13(1): 120-37. |
29 | 李 慧, 王 方. 上皮细胞-间质细胞转换过程中Snail基因家族的作用[J]. 国际眼科纵览, 2010, 34(1): 69-72. |
30 | Wanami LS, Chen HY, Peiró S, et al. Vascular endothelial growth factor-a stimulates Snail expression in breast tumor cells: implications for tumor progression[J]. Exp Cell Res, 2008, 314(13): 2448-53. |
31 | Saika S, Okada Y, Miyamoto T, et al. Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair[J]. Exp Eye Res, 2001, 72(6): 679-86. |
32 | Masuyama N, Hanafusa H, Kusakabe M, et al. Identification of two Smad4 proteins in Xenopus. Their common and distinct properties[J]. J Biol Chem, 1999, 274(17): 12163-70. |
33 | Xiao YC, Ye JT, Zhou Y, et al. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway[J]. Arch Biochem Biophys, 2018, 640: 37-46. |
34 | Park B, Hwang E, Seo SA, et al. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1[J]. Arch Biochem Biophys, 2018, 637: 31-9. |
[1] | 刘雪柔, 杨玉梅, 蔡 慧, 张耀帅, 范方田, 李 娴, 李姗姗. 阿美替尼具有较好的抗神经母细胞瘤作用:基于下调MMP2和MMP9的表达[J]. 南方医科大学学报, 2023, 43(9): 1493-1499. |
[2] | 郭晓娟, 陈丽平, 吕 芹, 杜瑞娟, 罗 琴, 张 阳, 卞 华, 韩 立. 桂枝茯苓胶囊通过调控NF-κB通路抑制卵巢癌细胞的迁移和诱导卵巢癌细胞的凋亡[J]. 南方医科大学学报, 2023, 43(8): 1315-1321. |
[3] | 谢紫平, 刘立威, 房锦存, 钟星怡, 林俊豪, 陈逢生. ARHGAP21通过失活WNT信号通路抑制非小细胞肺癌中的上皮间质转化[J]. 南方医科大学学报, 2023, 43(8): 1322-1332. |
[4] | 张攀扬, 何明敏, 曾园媛, 蔡雄伟. 高级别浆液性卵巢癌复发相关的潜在功能性关键 miRNA-mRNA:基于生物信息学方法[J]. 南方医科大学学报, 2023, 43(1): 8-16. |
[5] | 向茂翠, 王 瑜, 梅仁彪, 付计锋, 陈 静, 都昌乐. IL-17A与自发性高血压大鼠肾上皮间质转化密切相关[J]. 南方医科大学学报, 2022, 42(5): 772-779. |
[6] | 董洪亮, 曾莉莉, 武 艳, 苗 双, 倪 娜, 刘乃国, 陈微微, 杜 静. SOX2-OT/SOX2轴通过Gli1介导的上皮间质转化调控肺鳞癌H520细胞的迁移[J]. 南方医科大学学报, 2022, 42(10): 1431-1439. |
[7] | 左学良, 蔡 娟, 陈志强, 李艳娜, 张斗峰. CircPCSK5在胃癌中高表达并促进胃癌细胞的增殖、侵袭和上皮间质转化[J]. 南方医科大学学报, 2022, 42(10): 1440-1451. |
[8] | 高莉莉, 张 雄, 窦思雨, 岳小丁, 杨捷玲. 干扰长链编码RNA FOXCUT能抑制鼻咽癌细胞上皮间质转化及诱导线粒体损伤[J]. 南方医科大学学报, 2021, 41(9): 1334-1341. |
[9] | 姚 越, 张 冲, 熊言骏, 韩 兵, 高幸福, 汪 盛. miR-let-7c-5p通过靶向HMGA2抑制膀胱癌细胞侵袭和迁移[J]. 南方医科大学学报, 2021, 41(7): 1022-1029. |
[10] | 朱梦云, 崔双慧, 郝泽宇, 王文锐, 杨清玲, 陈昌杰, 王剑锋, 周 琦. 姜黄素通过 Wnt/β-catenin 信号通路诱导人晶状体上皮细胞的凋亡和细胞周期阻滞[J]. 南方医科大学学报, 2021, 41(5): 722-728. |
[11] | 张 怡, 姚 静, 权彦龙, 王建明, 邢 瑶, 周爱意. 基于光学相干断层扫描的不同类型糖尿病性黄斑水肿对康柏西普的治疗反应[J]. 南方医科大学学报, 2021, 41(10): 1501-1508. |
[12] | 胡雅琼, 梁 答, 陈新璐, 陈 琳, 白 俊, 李洪利, 尹崇高, 钟 伟. MiR-671-5p通过负向调控SMAD3抑制骨肉瘤细胞的迁移和侵袭[J]. 南方医科大学学报, 2021, 41(10): 1562-1568. |
[13] | 杨 静, 胡华钟, 张书勤, 姜琳瑞, 程远雄, 谢浩俊, 王小燕, 姜交华, 王 红, 张 群. 脐带间充质干细胞来源的外泌体通过抑制上皮间质转化缓解肺纤维化[J]. 南方医科大学学报, 2020, 40(07): 988-994. |
[14] | 赵 珂,郭玉刚,霍 正,马国辉,张 桂,邢雨欣,徐 茜. 食管鳞癌患者血清中lncRNA-TUSC7的表达及与细胞侵袭转移的关系[J]. 南方医科大学学报, 2020, 40(05): 661-669. |
[15] | 肖卓裕,陈明坤,杨建昆,杨诚,吕娴媛,田湖,刘存东. MTBP调控前列腺癌细胞的迁移和侵袭[J]. 南方医科大学学报, 2019, 39(01): 6-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||