Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (10): 2223-2230.doi: 10.12122/j.issn.1673-4254.2025.10.18
Shuxian LIN1(
), Lina GUO1, Yan MA2, Yao XIONG3, Yingxi HE1, Xinzhu XU1, Wen SHENG1, Suhua XU1, Feng QIU4(
)
Received:2025-01-11
Online:2025-10-20
Published:2025-10-24
Contact:
Feng QIU
E-mail:369207901@qq.com;QFSFL@126.com
Shuxian LIN, Lina GUO, Yan MA, Yao XIONG, Yingxi HE, Xinzhu XU, Wen SHENG, Suhua XU, Feng QIU. Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids[J]. Journal of Southern Medical University, 2025, 45(10): 2223-2230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.10.18
Fig.1 Growth characteristics of L. plantarum ZG03. A: Growth curve of ZG03. B: Colony morphology of ZG03. C: Field emission scanning electron microscopy (FESEM) images of ZG03.
Fig.2 Genomic characteristics of L. plantarum ZG03. A: Genomic circular map (from outer to inner circles): The first circle represents genomic position information; the second circle shows GC content; the third circle indicates protein-coding genes on the positive strand (marked in red); the fourth circle denotes protein-coding genes on the negative strand (marked in green); the fifth circle displays non-coding elements on the positive strand (marked in blue); the sixth circle represents non-coding elements on the negative strand (marked in purple); and the seventh circle shows long fragment repeat sequences within the genome (marked in orange). B: KEGG enrichment analysis. C: COG enrichment analysis.
| Feature | Value |
|---|---|
| Size (bp) | 3 613 757 |
| G+C content (%) | 46.42 |
| Coding region (%) | 80.70 |
| Total genes | 3 354 |
| RNA genes | 123 |
| rRNA genes | 16 |
| tRNA genes | 70 |
| Protein-coding genes | 3 231 |
| Protein coding genes with enzymes | 1 099 |
| Genes with signal petides | 176 |
| Genes with transmembrane helices | 911 |
Tab.1 Genomic information of L. plantarum ZG03
| Feature | Value |
|---|---|
| Size (bp) | 3 613 757 |
| G+C content (%) | 46.42 |
| Coding region (%) | 80.70 |
| Total genes | 3 354 |
| RNA genes | 123 |
| rRNA genes | 16 |
| tRNA genes | 70 |
| Protein-coding genes | 3 231 |
| Protein coding genes with enzymes | 1 099 |
| Genes with signal petides | 176 |
| Genes with transmembrane helices | 911 |
Fig.4 Number of neutrophils in the caudal hematopoietic tissue of zebrafish (n=10). A: Representative images of neutrophils (dashed box) in zebrafish. B: Quantitative analysis of neutrophil numbers in zebrafish. ###P<0.001 vs control group; ***P<0.001 vs model group.
Fig.5 Effect of L. plantarum ZG03 on glucose-induced oxidative stress in zebrafish. A: Representative images of ROS staining in zebrafish. B: Statistical analysis of relative ROS levels (n=6). C: SOD activity in zebrafish (n=3). D: MDA levels in zebrafish (n=3). ##P<0.01 vs control group; *P<0.05, **P<0.01, ***P<0.001 vs model group.
Fig.6 Content of short-chain fatty acid metabolites in zebrafish (n=3). A: Acetic acid content in zebrafish. B: Propionic acid content in zebrafish. C: Hexanoic acid content in zebrafish. ##P<0.01, ###P<0.001vs control group; *P<0.05 vs model group.
| [1] | Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-3. doi:10.1016/j.redox.2015.01.002 |
| [2] | Sies H. Oxidative stress: concept and some practical aspects[J]. Antioxidants (Basel), 2020, 9(9): 852. doi:10.3390/antiox9090852 |
| [3] | Shaito A, Aramouni K, Assaf R, et al. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases[J]. Front Biosci (Landmark Ed), 2022, 27(3): 105. doi:10.31083/j.fbl2703105 |
| [4] | Mani S, Dubey R, Lai IC, et al. Oxidative stress and natural antioxidants: back and forth in the neurological mechanisms of Alzheimer’s disease[J]. J Alzheimers Dis, 2023, 96(3): 877-912. doi:10.3233/jad-220700 |
| [5] | Houldsworth A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants[J]. Brain Commun, 2024, 6(1): fcad356. doi:10.1093/braincomms/fcad356 |
| [6] | Ryan A, Murphy M, Godson C, et al. Diabetes mellitus and apoptosis: inflammatory cells[J]. Apoptosis, 2009, 14(12): 1435-50. doi:10.1007/s10495-009-0340-z |
| [7] | Zhang PJ, Li T, Wu XY, et al. Oxidative stress and diabetes: antioxidative strategies[J]. Front Med, 2020, 14(5): 583-600. doi:10.1007/s11684-019-0729-1 |
| [8] | Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development[J]. Lancet, 2012, 379(9833): 2279-90. doi:10.1016/s0140-6736(12)60283-9 |
| [9] | Liu YY, Tran DQ, Rhoads JM. Probiotics in disease prevention and treatment[J]. J Clin Pharmacol, 2018, 58(): S164-79. doi:10.1002/jcph.1121 |
| [10] | Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review[J]. Gut Microbes, 2020, 12(1): 1801944. doi:10.1080/19490976.2020.1801944 |
| [11] | 尹龙杰, 张 雨, 陈舒焕, 等. 鼠李糖乳杆菌GG对大鼠脂多糖应激下抗氧化能力、免疫功能和肠道健康的影响[J]. 饲料工业, 2024, 45(9): 93-100. |
| [12] | 周先容, 谭 仟, 母健菲, 等. 泡菜源乳酸菌的分离筛选及其对小鼠氧化应激水平的改善作用[J]. 现代食品科技, 2020, 36(9): 17-25. |
| [13] | 李 月, 闫 薇, 姜 斌, 等. 植物乳植杆菌H8对小鼠氧化损伤的作用机制[J]. 食品科学技术学报, 2024, 42(5): 93-103. |
| [14] | Wang L, Zhao ZJ, Zhao L, et al. Lactobacillus plantarum DP189 reduces α-SYN aggravation in MPTP-induced Parkinson’s disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder[J]. J Agric Food Chem, 2022, 70(4): 1163-73. doi:10.1021/acs.jafc.1c07711 |
| [15] | He J, Zhang PW, Shen LY, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17): 6356. doi:10.3390/ijms21176356 |
| [16] | Xu R, Wang T, Ding FF, et al. Lactobacillus plantarum ameliorates high-carbohydrate diet-induced hepatic lipid accumulation and oxidative stress by upregulating uridine synthesis[J]. Antioxidants (Basel), 2022, 11(7): 1238. doi:10.3390/antiox11071238 |
| [17] | Li ZH, Shi YQ, Zhang XH, et al. Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays[J]. Front Pharmacol, 2020, 11: 287. doi:10.3389/fphar.2020.00287 |
| [18] | Zhao WC, Chen YN, Hu N, et al. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: a review based on bibliometrics[J]. Ecotoxicol Environ Saf, 2024, 272: 116023. doi:10.1016/j.ecoenv.2024.116023 |
| [19] | Hu CW, Sun L, Chen JQ, et al. Advantages of the zebrafish tumor xenograft model: the evaluation of efficacy in cancer therapy and the application to the study of lncRNAs[J]. Front Immunol, 2024, 15: 1483192. doi:10.3389/fimmu.2024.1483192 |
| [20] | Zhang Y, Xia Q, Wang JB, et al. Progress in using zebrafish as a toxicological model for traditional Chinese medicine[J]. J Ethnopharmacol, 2022, 282: 114638. doi:10.1016/j.jep.2021.114638 |
| [21] | Chowdhury S, Saikia SK. Use of zebrafish as a model organism to study oxidative stress: a review[J]. Zebrafish, 2022, 19(5): 165-76. doi:10.1089/zeb.2021.0083 |
| [22] | Subba R, Fasciolo G, Geremia E, et al. Simultaneous induction of systemic hyperglycaemia and stress impairs brain redox homeostasis in the adult zebrafish[J]. Arch Biochem Biophys, 2024, 759: 110101. doi:10.1016/j.abb.2024.110101 |
| [23] | Li YQ, Chen QQ, Liu YN, et al. High glucose-induced ROS-accumulation in embryo-larval stages of zebrafish leads to mitochondria-mediated apoptosis[J]. Apoptosis, 2022, 27(7/8): 509-20. doi:10.1007/s10495-022-01731-2 |
| [24] | Weinberg Sibony R, Segev O, Dor S, et al. Overview of oxidative stress and inflammation in diabetes[J]. J Diabetes, 2024, 16(10): e70014. doi:10.1111/1753-0407.70014 |
| [25] | He BL, Hu TG, Wu H. Phenotypic screening of novel probiotics with potential anti-neuroinflammation activity based on cell and zebrafish models[J]. Food Biosci, 2023, 55: 102949. doi:10.1016/j.fbio.2023.102949 |
| [26] | Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi:10.1080/19490976.2015.1134082 |
| [27] | Jeong JJ, Ganesan R, Jin YJ, et al. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats[J]. Front Microbiol, 2023, 14: 1174968. doi:10.3389/fmicb.2023.1174968 |
| [28] | Cuciniello R, Di Meo F, Filosa S, et al. The antioxidant effect of dietary bioactives arises from the interplay between the physiology of the host and the gut microbiota: involvement of short-chain fatty acids[J]. Antioxidants (Basel), 2023, 12(5): 1073. doi:10.3390/antiox12051073 |
| [29] | Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-95. doi:10.1038/s41577-024-01014-8 |
| [30] | Wang YM, Dilidaxi D, Wu YC, et al. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J]. Biomed Pharmacother, 2020, 125: 109914. doi:10.1016/j.biopha.2020.109914 |
| [31] | Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, et al. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study[J]. Clin Nutr, 2017, 36(1): 85-92. doi:10.1016/j.clnu.2015.11.011 |
| [1] | Yu ZHANG, Yinqi HU, Peipei LI, Xiao SHI, Wei XU, Jianpeng HU. Naoluo Xintong Decoction promotes proliferation of rat brain microvascular endothelial cells after oxygen-glucose deprivation by activating the HIF-1α/VEGF signaling pathway [J]. Journal of Southern Medical University, 2025, 45(9): 1980-1988. |
| [2] | Jingxian WANG, Zijing REN, Peiyang ZHOU. S1PR5 activation or overexpression enhances barrier function of mouse brain microvascular endothelial cells against OGD/R injury by modulating oxidative stress [J]. Journal of Southern Medical University, 2025, 45(7): 1451-1459. |
| [3] | Ruimin HAN, Manke ZHAO, Junfang YUAN, Zhenhong SHI, Zhen WANG, Defeng WANG. Live combined Bacillus subtilis and Enterococcus faecium improves glucose and lipid metabolism in type 2 diabetic mice with circadian rhythm disruption via the SCFAs/GPR43/GLP-1 pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1490-1497. |
| [4] | Xiaoxiang ZHANG, Ying TIAN, Lilan FU, Yin ZHANG, Ye DONG, Fei XIE, Li CHEN, Yanchao HUANG, Hubing WU, Jianer TAN. 68Ga-DOTATATE and 18F-FDG PET/CT dual-modality imaging enhances precision of staging and treatment decision for gastroenteropancreatic neuroendocrine neoplasms [J]. Journal of Southern Medical University, 2025, 45(6): 1212-1219. |
| [5] | Xinrui HOU, Zhendong ZHANG, Mingyuan CAO, Yuxin DU, Xiaoping WANG. Salidroside inhibits proliferation of gastric cancer cells by regulating the miR-1343-3p-OGDHL/PDHB glucose metabolic axis [J]. Journal of Southern Medical University, 2025, 45(6): 1226-1239. |
| [6] | Anbang ZHANG, Xiuqi SUN, Bo PANG, Yuanhua WU, Jingyu SHI, Ning ZHANG, Tao YE. Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(5): 911-920. |
| [7] | Zhi GAO, Ao WU, Zhongxiang HU, Peiyang SUN. Bioinformatics analysis of oxidative stress and immune infiltration in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(4): 862-870. |
| [8] | Ming LIAO, Wenhua ZHONG, Ran ZHANG, Juan LIANG, Wentaorui XU, Wenjun WAN, Chao LI Shu WU. Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3 [J]. Journal of Southern Medical University, 2025, 45(3): 614-621. |
| [9] | Pengwei HUANG, Jie CHEN, Jinhu ZOU, Xuefeng GAO, Hong CAO. Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules [J]. Journal of Southern Medical University, 2025, 45(2): 304-312. |
| [10] | XU Xinzhu, Lina GUO, Kangdi ZHENG, Yan MA, Shuxian LIN, Yingxi HE, Wen SHENG, Suhua XU, Feng QIU. Lacticaseibacillus paracasei E6 improves vinorelbine-induced immunosuppression in zebrafish through its metabolites acetic acid and propionic acid [J]. Journal of Southern Medical University, 2025, 45(2): 331-339. |
| [11] | Tao GUO, Bolin CHEN, Jinsha SHI, Xianfeng KUANG, Tengyue YU, Song WEI, Xiong LIU, Rong XIAO, Juanjuan LI. Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling [J]. Journal of Southern Medical University, 2025, 45(10): 2071-2081. |
| [12] | Wei LUO, Yuhang WANG, Yansong LIU, Yuanyuan WANG, Lei AI. High glucose induces pro-inflammatory polarization of macrophages by inhibiting immune-responsive gene 1 expression [J]. Journal of Southern Medical University, 2025, 45(1): 1-9. |
| [13] | Yuming ZHANG, Shicheng XIA, Linlin ZHANG, Mengxi CHEN, Xiaojing LIU, Qin GAO, Hongwei YE. Protective effect of Lonicerae japonicae flos extract against doxorubicin-induced liver injury in mice [J]. Journal of Southern Medical University, 2024, 44(8): 1571-1581. |
| [14] | Jing XIAO, Ying LI, Min FANG, Hong GONG, Wen LI, Chunyan ZHANG, Fangyao CHEN, Yan ZHANG, Tuo HAN. Triglyceride-glucose index in non-obese individuals: its association with and predictive value for non-alcoholic fatty liver disease [J]. Journal of Southern Medical University, 2024, 44(7): 1266-1271. |
| [15] | Zhijun REN, Jianxin DIAO, Yiting WANG. Xionggui Decoction alleviates heart failure in mice with myocardial infarction by inhibiting oxidative stress-induced cardiomyocyte apoptosis [J]. Journal of Southern Medical University, 2024, 44(7): 1416-1424. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||