Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (7): 1266-1271.doi: 10.12122/j.issn.1673-4254.2024.07.06
Jing XIAO1(), Ying LI1(
), Min FANG2, Hong GONG3, Wen LI1, Chunyan ZHANG1, Fangyao CHEN4, Yan ZHANG1(
), Tuo HAN1(
)
Received:
2023-12-17
Online:
2024-07-20
Published:
2024-07-25
Contact:
Yan ZHANG, Tuo HAN
E-mail:xjdyx@stu.xjtu.edu.cn;liying2021a@163.com;zy1985525@126.com;heart0228@xjtu.edu.cn
Supported by:
Jing XIAO, Ying LI, Min FANG, Hong GONG, Wen LI, Chunyan ZHANG, Fangyao CHEN, Yan ZHANG, Tuo HAN. Triglyceride-glucose index in non-obese individuals: its association with and predictive value for non-alcoholic fatty liver disease[J]. Journal of Southern Medical University, 2024, 44(7): 1266-1271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.07.06
Variables | Total (n=3723) | Q1 (n=932) | Q2 (n=929) | Q3 (n=929) | Q4 (n=933) | P |
---|---|---|---|---|---|---|
Age (year) | 43.4 (13.1) | 36.7 (10.7) | 41.8 (12.8) | 46.8 (13.3) | 48.3 (12.3) | <0.001 |
Gender [n(%)] | <0.001 | |||||
Female | 2024 (54.4%) | 715 (76.7%) | 546 (58.8%) | 441 (47.5%) | 322 (34.5%) | |
Male | 1699 (45.6%) | 217 (23.3%) | 383 (41.2%) | 488 (52.5%) | 611 (65.5%) | |
Somke [n(%)] | <0.001 | |||||
Never | 3434 (92.2%) | 909 (97.5%) | 870 (93.6%) | 833 (89.7%) | 822 (88.1%) | |
Smoker | 289 (7.76%) | 23 (2.47%) | 59 (6.35%) | 96 (10.3%) | 111 (11.9%) | |
BMI (kg/m2) | 21.9 (2.04) | 20.8 (2.01) | 21.5 (2.03) | 22.4 (1.91) | 23.0 (1.48) | <0.001 |
SBP (mmHg) | 119 (14.9) | 112 (12.0) | 117 (13.4) | 121 (14.9) | 125 (15.3) | <0.001 |
DBP (mmHg) | 76.4 (9.90) | 72.2 (8.45) | 75.2 (9.52) | 77.4 (9.71) | 80.7 (9.86) | <0.001 |
Pulse (b/min) | 79.6 (11.4) | 80.1 (11.3) | 79.6 (11.6) | 78.9 (11.5) | 79.5 (11.2) | 0.125 |
Waistline (cm) | 75.6 (8.57) | 70.3 (7.73) | 73.9 (7.91) | 77.6 (7.86) | 80.5 (7.10) | <0.001 |
Hipline (cm) | 90.6 (5.00) | 88.7 (5.03) | 90.1 (4.91) | 91.6 (4.77) | 92.0 (4.60) | <0.001 |
White blood cells (×109/L) | 5.45 (1.41) | 5.05 (1.29) | 5.36 (1.31) | 5.53 (1.41) | 5.88 (1.47) | <0.001 |
Hemoglobin (g/L) | 142 (17.5) | 133 (16.7) | 140 (17.0) | 144 (16.4) | 149 (15.5) | <0.001 |
Platelets (×109/L) | 219 (57.0) | 222 (57.2) | 219 (55.6) | 218 (57.6) | 219 (57.4) | 0.419 |
Total bilirubin (μmol/L) | 12.3 (5.73) | 11.9 (5.93) | 12.3 (5.55) | 12.8 (5.77) | 12.4 (5.62) | 0.006 |
Direct bilirubin (μmol/L) | 4.75 (1.99) | 4.84 (1.97) | 4.83 (1.84) | 4.80 (1.82) | 4.55 (2.27) | 0.004 |
Indirect bilirubin (μmol/L) | 7.58 (4.04) | 7.02 (4.16) | 7.45 (3.90) | 7.98 (4.14) | 7.89 (3.90) | <0.001 |
ALT (U/L) | 17.7 (14.9) | 13.4 (8.72) | 15.7 (11.1) | 18.9 (16.5) | 22.7 (19.2) | <0.001 |
AST (U/L) | 19.5 (8.21) | 17.7 (6.14) | 18.6 (6.71) | 20.0 (7.31) | 21.6 (11.2) | <0.001 |
Albumin (g/L) | 46.1 (2.41) | 45.8 (2.54) | 46.0 (2.39) | 46.1 (2.33) | 46.4 (2.33) | <0.001 |
TC (mmol/L) | 4.35 (0.83) | 3.98 (0.71) | 4.21 (0.74) | 4.45 (0.77) | 4.75 (0.87) | <0.001 |
TG (mmol/L) | 1.28 (0.97) | 0.60 (0.12) | 0.90 (0.11) | 1.26 (0.19) | 2.34 (1.40) | <0.001 |
HDL-C (mmol/L) | 1.32 (0.31) | 1.48 (0.32) | 1.40 (0.29) | 1.27 (0.27) | 1.12 (0.23) | <0.001 |
LDL-C (mmol/L) | 2.56 (0.72) | 2.23 (0.61) | 2.46 (0.65) | 2.71 (0.69) | 2.83 (0.78) | <0.001 |
FBG (mmol/L) | 5.13 (1.00) | 4.77 (0.39) | 4.92 (0.43) | 5.13 (0.59) | 5.71 (1.67) | <0.001 |
SUA (μmol/L) | 276 (74.5) | 242 (60.8) | 265 (65.4) | 286 (75.0) | 310 (78.1) | <0.001 |
Urea nitrogen (mmol/L) | 4.29 (1.10) | 4.10 (1.09) | 4.23 (1.08) | 4.35 (1.09) | 4.45 (1.10) | <0.001 |
Creatinine (mmol/L) | 64.5 (13.6) | 60.1 (11.7) | 63.8 (12.8) | 66.0 (13.9) | 68.1 (14.4) | <0.001 |
TyG | 8.39 (0.58) | 7.71 (0.21) | 8.16 (0.10) | 8.53 (0.12) | 9.16 (0.41) | <0.001 |
NAFLD [n(%)] | 432 (11.6%) | 8 (0.86%) | 35 (3.77%) | 108 (11.6%) | 281 (30.1%) | <0.001 |
Tab.1 Comparison of the characteristics of the individuals with TyG in the 4 quartiles
Variables | Total (n=3723) | Q1 (n=932) | Q2 (n=929) | Q3 (n=929) | Q4 (n=933) | P |
---|---|---|---|---|---|---|
Age (year) | 43.4 (13.1) | 36.7 (10.7) | 41.8 (12.8) | 46.8 (13.3) | 48.3 (12.3) | <0.001 |
Gender [n(%)] | <0.001 | |||||
Female | 2024 (54.4%) | 715 (76.7%) | 546 (58.8%) | 441 (47.5%) | 322 (34.5%) | |
Male | 1699 (45.6%) | 217 (23.3%) | 383 (41.2%) | 488 (52.5%) | 611 (65.5%) | |
Somke [n(%)] | <0.001 | |||||
Never | 3434 (92.2%) | 909 (97.5%) | 870 (93.6%) | 833 (89.7%) | 822 (88.1%) | |
Smoker | 289 (7.76%) | 23 (2.47%) | 59 (6.35%) | 96 (10.3%) | 111 (11.9%) | |
BMI (kg/m2) | 21.9 (2.04) | 20.8 (2.01) | 21.5 (2.03) | 22.4 (1.91) | 23.0 (1.48) | <0.001 |
SBP (mmHg) | 119 (14.9) | 112 (12.0) | 117 (13.4) | 121 (14.9) | 125 (15.3) | <0.001 |
DBP (mmHg) | 76.4 (9.90) | 72.2 (8.45) | 75.2 (9.52) | 77.4 (9.71) | 80.7 (9.86) | <0.001 |
Pulse (b/min) | 79.6 (11.4) | 80.1 (11.3) | 79.6 (11.6) | 78.9 (11.5) | 79.5 (11.2) | 0.125 |
Waistline (cm) | 75.6 (8.57) | 70.3 (7.73) | 73.9 (7.91) | 77.6 (7.86) | 80.5 (7.10) | <0.001 |
Hipline (cm) | 90.6 (5.00) | 88.7 (5.03) | 90.1 (4.91) | 91.6 (4.77) | 92.0 (4.60) | <0.001 |
White blood cells (×109/L) | 5.45 (1.41) | 5.05 (1.29) | 5.36 (1.31) | 5.53 (1.41) | 5.88 (1.47) | <0.001 |
Hemoglobin (g/L) | 142 (17.5) | 133 (16.7) | 140 (17.0) | 144 (16.4) | 149 (15.5) | <0.001 |
Platelets (×109/L) | 219 (57.0) | 222 (57.2) | 219 (55.6) | 218 (57.6) | 219 (57.4) | 0.419 |
Total bilirubin (μmol/L) | 12.3 (5.73) | 11.9 (5.93) | 12.3 (5.55) | 12.8 (5.77) | 12.4 (5.62) | 0.006 |
Direct bilirubin (μmol/L) | 4.75 (1.99) | 4.84 (1.97) | 4.83 (1.84) | 4.80 (1.82) | 4.55 (2.27) | 0.004 |
Indirect bilirubin (μmol/L) | 7.58 (4.04) | 7.02 (4.16) | 7.45 (3.90) | 7.98 (4.14) | 7.89 (3.90) | <0.001 |
ALT (U/L) | 17.7 (14.9) | 13.4 (8.72) | 15.7 (11.1) | 18.9 (16.5) | 22.7 (19.2) | <0.001 |
AST (U/L) | 19.5 (8.21) | 17.7 (6.14) | 18.6 (6.71) | 20.0 (7.31) | 21.6 (11.2) | <0.001 |
Albumin (g/L) | 46.1 (2.41) | 45.8 (2.54) | 46.0 (2.39) | 46.1 (2.33) | 46.4 (2.33) | <0.001 |
TC (mmol/L) | 4.35 (0.83) | 3.98 (0.71) | 4.21 (0.74) | 4.45 (0.77) | 4.75 (0.87) | <0.001 |
TG (mmol/L) | 1.28 (0.97) | 0.60 (0.12) | 0.90 (0.11) | 1.26 (0.19) | 2.34 (1.40) | <0.001 |
HDL-C (mmol/L) | 1.32 (0.31) | 1.48 (0.32) | 1.40 (0.29) | 1.27 (0.27) | 1.12 (0.23) | <0.001 |
LDL-C (mmol/L) | 2.56 (0.72) | 2.23 (0.61) | 2.46 (0.65) | 2.71 (0.69) | 2.83 (0.78) | <0.001 |
FBG (mmol/L) | 5.13 (1.00) | 4.77 (0.39) | 4.92 (0.43) | 5.13 (0.59) | 5.71 (1.67) | <0.001 |
SUA (μmol/L) | 276 (74.5) | 242 (60.8) | 265 (65.4) | 286 (75.0) | 310 (78.1) | <0.001 |
Urea nitrogen (mmol/L) | 4.29 (1.10) | 4.10 (1.09) | 4.23 (1.08) | 4.35 (1.09) | 4.45 (1.10) | <0.001 |
Creatinine (mmol/L) | 64.5 (13.6) | 60.1 (11.7) | 63.8 (12.8) | 66.0 (13.9) | 68.1 (14.4) | <0.001 |
TyG | 8.39 (0.58) | 7.71 (0.21) | 8.16 (0.10) | 8.53 (0.12) | 9.16 (0.41) | <0.001 |
NAFLD [n(%)] | 432 (11.6%) | 8 (0.86%) | 35 (3.77%) | 108 (11.6%) | 281 (30.1%) | <0.001 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) P | OR (95% CI) P | OR (95% CI) P | ||||
TyG | 7.14 (5.86-8.76) | <0.001 | 5.22 (4.23-6.50) | <0.001 | 3.22 (2.53-4.12) | <0.001 |
Quartiles | ||||||
Q1 (n=932) | Ref. | Ref. | Ref. | |||
Q2 (n=929) | 4.52 (2.20-10.54) | <0.001 | 3.35 (1.61-7.85) | 0.002 | 2.52 (1.20-5.95) | 0.022 |
Q3 (n=929) | 15.19 (7.85-34.08) | <0.001 | 8.52 (4.33-19.31) | <0.001 | 4.56 (2.28-10.46) | <0.001 |
Q4 (n=933) | 49.78 (26.19-110.39) | <0.001 | 24.21 (12.48-54.41) | <0.001 | 9.66 (4.83-22.18) | <0.001 |
Tab.2 Logistic regression analysis of the association between the TyG and the risk of non-obese NAFLD
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) P | OR (95% CI) P | OR (95% CI) P | ||||
TyG | 7.14 (5.86-8.76) | <0.001 | 5.22 (4.23-6.50) | <0.001 | 3.22 (2.53-4.12) | <0.001 |
Quartiles | ||||||
Q1 (n=932) | Ref. | Ref. | Ref. | |||
Q2 (n=929) | 4.52 (2.20-10.54) | <0.001 | 3.35 (1.61-7.85) | 0.002 | 2.52 (1.20-5.95) | 0.022 |
Q3 (n=929) | 15.19 (7.85-34.08) | <0.001 | 8.52 (4.33-19.31) | <0.001 | 4.56 (2.28-10.46) | <0.001 |
Q4 (n=933) | 49.78 (26.19-110.39) | <0.001 | 24.21 (12.48-54.41) | <0.001 | 9.66 (4.83-22.18) | <0.001 |
Fig.1 Analysis of the association between TyG and non-obese NAFLD using a restricted cubic spline regression model. Graphs show ORs for non-obese NAFLD according to TyG adjusted for age, gender, BMI, SBP, DBP, waistline, HDL-C, LDL-C, ALT, SUA and creatinine. Data are fitted by a logistic regression model, and the model is conducted with 4 knots at the 5th, 35th, 65th, 95th percentiles of TyG (with the 5th percentile as reference). Solid lines indicate the odds ratio (OR), and the shadowed area indicates 95% CIs.
1 | Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications[J]. Gut, 2024, 73(4): 691-702. |
2 | Ye Q, Zou BY, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2020, 5(8): 739-52. |
3 | Xu RH, Pan JS, Zhou WJ, et al. Recent advances in lean NAFLD[J]. Biomed Pharmacother, 2022, 153: 113331. |
4 | Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications[J]. Gut, 2020, 69(9): 1691-705. |
5 | Cai JJ, Zhang XJ, Ji YX, et al. Nonalcoholic fatty liver disease pandemic fuels the upsurge in cardiovascular diseases[J]. Circ Res, 2020, 126(5): 679-704. |
6 | Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population[J]. Clin Gastroenterol Hepatol, 2012, 10(6): 646-50. |
7 | 卢 蓉, 李 慧, 张 超, 等. 甘油三酯/葡萄糖指数预测非酒精性脂肪性肝病严重程度效能研究[J]. 实用肝脏病杂志, 2023, 26(6): 805-10. |
8 | 张 沥, 陈海滨, 宋俊华. TyG-BMI对非酒精性脂肪性肝病的预测价值分析[J]. 中华保健医学杂志, 2023, 25(2): 151-4. |
9 | 康 娟, 刘文徽, 常 青, 等. 三酰甘油-葡萄糖指数及其衍生指数与老年男性代谢相关脂肪性肝病的相关性分析[J]. 解放军医学杂志, 2023, 48(11): 1344-52. |
10 | Long MT, Noureddin M, Lim JK. AGA clinical practice update: diagnosis and management ofNonalcoholic fatty liver disease in lean individuals: ExpertReview[J]. Gastroenterology, 2022, 163(3): 764-74.e1. |
11 | Wu ZG, Liu L, Wang WW, et al. Triglyceride-glucose index in the prediction of adverse cardiovascular events in patients with premature coronary artery disease: a retrospective cohort study[J]. Cardiovasc Diabetol, 2022, 21(1): 142. |
12 | Ozturk A, Kumar V, Pierce TT, et al. The future is beyond bright: the evolving role of quantitative US for fatty liver disease[J]. Radiology, 2023, 309(2): e223146. |
13 | Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. |
14 | Chan WK, Chuah KH, Rajaram RB, et al. Metabolic dysfunction-associated steatotic liver disease (MASLD): a state-of-the-art review[J]. J Obes Metab Syndr, 2023, 32(3): 197-213. |
15 | Phipps M, Wattacheril J. Non-alcoholic fatty liver disease (NAFLD) in non-obese individuals[J]. Frontline Gastroenterol, 2020, 11(6): 478-83. |
16 | Tan EX, Lee JW, Jumat NH, et al. Non-obese non-alcoholic fatty liver disease (NAFLD) in Asia: an international registry study[J]. Metabolism, 2022, 126: 154911. |
17 | Zhang ZY, Zhang L, Jiang WY, et al. Non-obese NAFLD had no better cardio-metabolic risk profile than obese NAFLD in type 2 diabetic patients[J]. Cardiovasc Diabetol, 2022, 21(1): 210. |
18 | Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease[J]. Mol Metab, 2020, 42: 101092. |
19 | Yoshitaka H, Hamaguchi M, Kojima T, et al. Nonoverweight nonalcoholic fatty liver disease and incident cardiovascular disease: a post hoc analysis of a cohort study[J]. Medicine, 2017, 96(18): e6712. |
20 | Er LK, Wu S, Chou HH, et al. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals[J]. PLoS One, 2016, 11(3): e0149731. |
21 | Zhao JQ, Fan HX, Wang T, et al. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients[J]. Cardiovasc Diabetol, 2022, 21(1): 123. |
22 | Lee G, You HJ, Bajaj JS, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD[J]. Nat Commun, 2020, 11(1): 4982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||