Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (7): 1498-1505.doi: 10.12122/j.issn.1673-4254.2025.07.16
Previous Articles Next Articles
Xiuying GONG1(), Shunfu HOU1, Miaomiao ZHAO1, Xiaona WANG1, Zhihan ZHANG2, Qinghua LIU1, Chonggao YIN3, Hongli LI1(
)
Received:
2024-12-17
Online:
2025-07-20
Published:
2025-07-17
Contact:
Hongli LI
E-mail:20230105@stu.sdsmu.edu.cn;lihongli@sdsmu.edu.cn
Supported by:
Xiuying GONG, Shunfu HOU, Miaomiao ZHAO, Xiaona WANG, Zhihan ZHANG, Qinghua LIU, Chonggao YIN, Hongli LI. LncRNA SNHG15 promotes proliferation, migration and invasion of lung adenocarcinoma cells by regulating COX6B1 through sponge adsorption of miR-30b-3p[J]. Journal of Southern Medical University, 2025, 45(7): 1498-1505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.07.16
Fig.1 Screening for LncRNAs with targeted binding to miR-30b-3p. A: Venn plots showing the intersection of GSE196584 with LncBase database predictions. B-D: Survival curve analysis of LINC00963, THAP9-AS1 and LENG8-AS1. E: Survival curve analysis of MALAT1. F: LncRNA SNHG15 survival curve analysis. G: StarBase database analysis of differential expression of LncRNA SNHG15. H: Database LncLocator prediction of LncRNA SNHG15 cellular sublocilization. I: fluorescence in situ hybridization (FISH) assay for detecting localization of LncRNA SNHG15 in lung adenocarcinoma A549 and NCI-H1299 cells (Scale bar=50 μm). J: TargerScan Website Predicts Binding Sites. K: Dual-luciferase assay to validate the target binding ability of miR-30b-3p to LncRNA SNHG15. **P<0.01 vs miR-NC group.
Fig.2 LncRNA SNHG15 promotes A549 migration, invasion and proliferation ability by targeting miR-30b-3p. A: RT-qPCR to verify LncRNA SNHG15 expression in BEAS-2B, A549 and NCI-H1299 cell lines. B: qRT-PCR for assessing the knockdown efficiency of LncRNA SNHG15. C: EdU experiments for assessing the effect of co-transfection with LncRNA SNHG15 and miR-30b-3p inhibitor on proliferation of lung adenocarcinoma cells (Scale bar=100 μm). D: Wound healing assay for assessing the effect of co-transfection with LncRNA SNHG15 and miR-30b-3p inhibitor on migration of A549 cells (Scale bar=500 μm). E: Transwell assay for assessing the effect of co-transfection with LncRNA SNHG15 and miR-30b-3p inhibitor on invasion and migration ability of lung adenocarcinoma cells (Scale bar=100 μm). **P<0.01, ***P<0.001 vs sh-NC+miR-NC group.
Fig.3 Correlation analysis of LncRNA SNHG15, miR-30b-3p and COX6B1 in LUAD. A: Positive correlation between LncRNA SNHG15 and COX6B1 expressions (r=0.128, P=3.33e-03). B: StarBase database analysis of COX6B1 differential expression. C: Survival curve analysis of COX6B1. D: Western blotting for assessing the effect of knockdown of LncRNA SNHG15 on COX6B1 expression. ***P<0.001 vs NC/A549 group.
Fig.4 LncRNA SNHG15 regulates COX6B1 to promote lung adenocarcinoma cell proliferation, migration, and invasion via sponge adsorption of miR-30b-3p. A: EdU experiments for assessing the effect of co-transfection with COX6B1 and miR-30b-3p on proliferation of lung adenocarcinoma cells (Scale bar=100 μm). B: Wound healing assay for assessing the effect of co-transfection with COX6B1 and miR-30b-3p on migration of A549 cells (Scale bar=500 μm). C: Transwell assay for assessing the effect of co-transfection with COX6B1 and miR-30b -3p on migration and invasion ability of lung adenocarcinoma cells (Scale bar=100 μm). **P<0.01, ***P<0.001, ****P<0.0001 vs sh-NC+CON group.
[1] | Chen M, Copley SJ, Viola P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113. doi:10.1016/j.semcancer.2023.05.004 |
[2] | Wu Y, Li K, Liang S, et al. An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma[J]. Respir Res, 2023, 24(1): 142. doi:10.1186/s12931-023-02443-0 |
[3] | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA A Cancer J Clinicians, 2022, 72(1): 7-33. doi:10.3322/caac.21708 |
[4] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi:10.3322/caac.21660 |
[5] | Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based trea-tment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117. doi:10.1038/s41419-017-0063-y |
[6] | Wei X, Li X, Hu S, et al. Regulation of ferroptosis in lung adenocarcinoma[J]. Int J Mol Sci, 2023, 24(19): 14614. doi:10.3390/ijms241914614 |
[7] | Zhang XF, Ma L, Xue M, et al. Advances in lymphatic metastasis of non-small cell lung cancer[J]. Cell Commun Signal, 2024, 22(1): 201. doi:10.1186/s12964-024-01574-1 |
[8] | Zhai D, Zhou Y, Kuang X, et al. Lnc NR2F1-AS1 promotes breast cancer metastasis by targeting the miR-25-3p/ZEB2 axis[J]. Int J Med Sci, 2023, 20(9): 1152-62. doi:10.7150/ijms.86969 |
[9] | Zhang C, Gong C, Li J, et al. Downregulation of long non-coding RNA LINC-PINT serves as a diagnostic and prognostic biomarker in patients with non-small cell lung cancer[J]. Oncol Lett, 2021, 21(3): 210. doi:10.3892/ol.2021.12471 |
[10] | Liu R, Wang J, Zhang L, et al. GLIDR-mediated regulation of tumor malignancy and cisplatin resistance in non-small cell lung cancer via the miR-342-5p/PPARGC1A axis[J]. BMC Cancer, 2024, 24(1): 1126. doi:10.1186/s12885-024-12845-y |
[11] | Sun DE, Ye SY. Emerging roles of long noncoding RNA regulator of reprogramming in cancer treatment[J]. Cancer Manag Res, 2020, 12: 6103-12. doi:10.2147/cmar.s253042 |
[12] | Guo L, Sun C, Xu S, et al. Knockdown of long non-coding RNA linc-ITGB1 inhibits cancer stemness and epithelial-mesenchymal transition by reducing the expression of Snail in non-small cell lung cancer[J]. Thorac Cancer, 2019, 10(2): 128-36. doi:10.1111/1759-7714.12911 |
[13] | Li D, Ma Y, Deng W, et al. Construction and analysis of lncRNA-associated CeRNA network in atherosclerotic plaque formation[J]. Biomed Res Int, 2022, 2022: 4895611. doi:10.1155/2022/4895611 |
[14] | Lu S, Zeng L, Mo G, et al. Correction: Long non-coding RNA SNHG17 may function as a competitive endogenous RNA in diffuse large B-cell lymphoma progression by sponging miR-34a-5p[J]. PLoS One, 2024, 19(12): e0317025. doi:10.1371/journal.pone.0317025 |
[15] | Ma P, Kang S, Li H, et al. A novel lncRNA AC112721.1 promotes the progression of triple-negative breast cancer by directly binding to THBS1 and regulating miR-491-5p/C2CD2L axis[J]. Sci Rep, 2024, 14(1): 32056. doi:10.1038/s41598-024-83665-0 |
[16] | Zhang H, Cai W, Miao Y, et al. Long non-coding RNA LINC01116 promotes the proliferation of lung adenocarcinoma by targeting miR-9-5p/CCNE1 axis[J]. J Cell Mol Med, 2024, 28(23): e70270. doi:10.1111/jcmm.70270 |
[17] | Chen L, Chen X, Liu L, et al. miR-30b-3p inhibits the proliferation and invasion of lung adenocarcinoma by targeting COX6B1[J]. Zhongguo Fei Ai Za Zhi, 2022, 25(8): 567-74. |
[18] | Yu H, Zhang W, Xu XR, et al. Drug resistance related genes in lung adenocarcinoma predict patient prognosis and influence the tumor microenvironment[J]. Sci Rep, 2023, 13(1): 9682. doi:10.1038/s41598-023-35743-y |
[19] | Wang L, Xie X. STIL enhances the development of lung adeno-carcinoma by regulating the glycolysis pathway[J]. Oncol Res, 2025, 33(1): 123-32. doi:10.32604/or.2024.048562 |
[20] | Jin X, Liu D, Kong D, et al. Dissecting the alternation landscape of mitochondrial metabolism-related genes in lung adenocarcinoma and their latent mechanisms[J]. Aging: Albany NY, 2023, 15(12): 5482-96. doi:10.18632/aging.204803 |
[21] | Zhang Q, Chen X, Hu Y, et al. BIRC5 inhibition is associated with pyroptotic cell death via Caspase3-GSDME pathway in lung adenocarcinoma cells[J]. Int J Mol Sci, 2023, 24(19): 14663. doi:10.3390/ijms241914663 |
[22] | Yu Y, Cai Y, Zhou H. LncRNA SNHG15 regulates autophagy and prevents cerebral ischaemia-reperfusion injury through mediating miR-153-3p/ATG5 axis[J]. J Cell Mol Med, 2024, 28(5): e17956. doi:10.1111/jcmm.17956 |
[23] | Tan MY, Pan Q, Gong H, et al. Super-enhancer-associated SNHG15 cooperating with FOSL1 contributes to bladder cancer progression through the WNT pathway[J]. Pharmacol Res, 2023, 197: 106940. doi:10.1016/j.phrs.2023.106940 |
[24] | Min H, Yang L, Xu X, et al. SNHG15 promotes gallbladder cancer progression by enhancing the autophagy of tumor cell under nutrition stress[J]. Cell Cycle, 2023, 22(19): 2130-41. doi:10.1080/15384101.2023.2278339 |
[25] | Beyrami M, Khodadadi I, Tavilani H, et al. Uncovering the relationship between YAP/WWTR1 (TAZ) genes expression and LncRNAs of SNHG15 HCP5 and LINC01433 in breast cancer tissues[J]. Pathol Res Pract, 2024, 257: 155286. doi:10.1016/j.prp.2024.155286 |
[26] | Zhang W, Wang Y, Wan JZ, et al. COX6B1 relieves hypoxia/reoxygenation injury of neonatal rat cardiomyocytes by regulating mitochondrial function[J]. Biotechnol Lett, 2019, 41(1): 59-68. doi:10.1007/s10529-018-2614-4 |
[27] | Jennions E, Olsson-Engman M, Visuttijai K, et al. A novel homozygous pathogenic missense variant in COX6B1: Further delineation of the phenotype[J]. Am J Med Genet A, 2024, 194(10): e63783. doi:10.1002/ajmg.a.63783 |
[28] | Liu J, Chen T, Yang M, et al. Development of an oxidative phosphorylation-related and immune microenvironment prognostic signature in uterine corpus endometrial carcinoma[J]. Front Cell Dev Biol, 2021, 9: 753004. doi:10.3389/fcell.2021.753004 |
[29] | Stein J, Tenbrock J, Kristiansen G, et al. Systematic expression analysis of the mitochondrial respiratory chain protein subunits identifies COX5B as a prognostic marker in clear cell renal cell carcinoma[J]. Int J Urol, 2019, 26(9): 910-6. doi:10.1111/iju.14040 |
[30] | Zhan Z, Lin K, Wang T. Construction of oxidative phosphorylation-related prognostic risk score model in uveal melanoma[J]. BMC Ophthalmol, 2024, 24(1): 204. doi:10.1186/s12886-024-03441-6 |
[1] | Jiahao LI, Ruiting XIAN, Rong LI. Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells [J]. Journal of Southern Medical University, 2025, 45(6): 1163-1173. |
[2] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
[3] | Lu TAO, Zhuoli WEI, Yueyue WANG, Ping XIANG. CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition [J]. Journal of Southern Medical University, 2025, 45(3): 566-576. |
[4] | Zhoufang CAO, Yuan WANG, Mengna WANG, Yue SUN, Feifei LIU. LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(2): 371-378. |
[5] | Qiao CHU, Xiaona WANG, Jiaying XU, Huilin PENG, Yulin ZHAO, Jing ZHANG, Guoyu LU, Kai WANG. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways [J]. Journal of Southern Medical University, 2025, 45(1): 150-161. |
[6] | Xiaohua CHEN, Hui LU, Ziliang WANG, Lian WANG, Yongsheng XIA, Zhijun GENG, Xiaofeng ZHANG, Xue SONG, Yueyue WANG, Jing LI, Jianguo HU, Lugen ZUO. Role of Abelson interactor 2 in progression and prognosis of gastric cancer and its regulatory mechanisms [J]. Journal of Southern Medical University, 2024, 44(9): 1653-1661. |
[7] | Mingyang ZHU, Bokang WANG, Xiusen ZHANG, Kexu ZHOU, Zeyu MIAO, Jiangtao SUN. Assessment of baseline CCL19+ dendritic cell infiltration for predicting responses to immunotherapy in lung adenocarcinoma patients [J]. Journal of Southern Medical University, 2024, 44(8): 1529-1536. |
[8] | Zhi CUI, Cuijiao MA, Qianru WANG, Jinhao CHEN, Ziyang YAN, Jianlin YANG, Yafeng LÜ, Chunyu CAO. A recombinant adeno-associated virus expressing secretory TGF‑β type II receptor inhibits triple-negative murine breast cancer 4T1 cell proliferation and lung metastasis in mice [J]. Journal of Southern Medical University, 2024, 44(5): 818-826. |
[9] | Yongsheng XIA, Lian WANG, Xiaohua CHEN, Yulu ZHANG, Aofei SUN, Deli CHEN. TSR2 overexpression inhibits proliferation and invasion of gastric cancer cells by downregulating the PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 913-919. |
[10] | Leilei SHEN, Ying CHEN, Tianyang YUN, Juntang GUO, Xi LIU, Tao ZHANG, Chaoyang LIANG, Yang LIU. Selection of postoperative adjuvant therapy for patients with stage IB lung adenocarcinoma: analysis of 653 cases [J]. Journal of Southern Medical University, 2024, 44(5): 989-997. |
[11] | HUANG Qiuhu, ZHOU Jian, WANG Zizhen, YANG Kun, CHEN Zhenggang. MiR-26-3p regulates proliferation, migration, invasion and apoptosis of glioma cells by targeting CREB1 [J]. Journal of Southern Medical University, 2024, 44(3): 578-584. |
[12] | ZHU Jin, OUYANG Xin, LIU Yu, QIAN Yemei, XIA Bin, SHI Yanan, YU Lifu. MiR-132-3p negatively regulates CAMTA1 to promote Schwann cell proliferation and migration and alleviates I-125 seeds-induced exacerbation of facial nerve injury in rats [J]. Journal of Southern Medical University, 2024, 44(3): 571-577. |
[13] | LIU Yunze, LI Chengrun, GUO Juntang, LIU Yang. A clinical-radiomics nomogram for differentiating focal organizing pneumonia and lung adenocarcinoma [J]. Journal of Southern Medical University, 2024, 44(2): 397-404. |
[14] | ZHONG Weixiong, LIANG Fangrong, YANG Ruimeng, ZHEN Xin. Prediction of microvascular invasion in hepatocellular carcinoma based on multi-phase dynamic enhanced CT radiomics feature and multi-classifier hierarchical fusion model [J]. Journal of Southern Medical University, 2024, 44(2): 260-269. |
[15] | Huahua ZHANG, Qingyin TA, Yun FENG, Jiming HAN. Holliday junction-recognizing protein is a potential predictive and prognostic biomarker for kidney renal clear cell carcinoma [J]. Journal of Southern Medical University, 2024, 44(12): 2347-2358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||