Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 80-89.doi: 10.12122/j.issn.1673-4254.2025.01.11
Previous Articles Next Articles
Meng XU1(), Lina CHEN2, Jinyu WU3, Lili LIU4, Mei SHI4, Hao ZHOU4, Guoliang ZHANG4(
)
Received:
2024-09-06
Online:
2025-01-20
Published:
2025-01-20
Contact:
Guoliang ZHANG
E-mail:1025473030@qq.com;zhangguoliang61@sina.com
Supported by:
Meng XU, Lina CHEN, Jinyu WU, Lili LIU, Mei SHI, Hao ZHOU, Guoliang ZHANG. Mechanism of Hedyotis diffusa-Scutellaria barbata D. Don for treatment of primary liver cancer: analysis with network pharmacology, molecular docking and in vitro validation[J]. Journal of Southern Medical University, 2025, 45(1): 80-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.11
Antibody name | Dilution ratio | Species and genus |
---|---|---|
JNK | 1:5000 | Mouse |
p-JNK | 1:1000 | Rabbit |
P38 | 1:2000 | Rabbit |
p-P38 | 1:1000 | Mouse |
ERK1/2 | 1:1000 | Rabbit |
P-ERK1/2 | 1:1000 | Rabbit |
Tab.1 List of the primary antibodies used for Western blotting
Antibody name | Dilution ratio | Species and genus |
---|---|---|
JNK | 1:5000 | Mouse |
p-JNK | 1:1000 | Rabbit |
P38 | 1:2000 | Rabbit |
p-P38 | 1:1000 | Mouse |
ERK1/2 | 1:1000 | Rabbit |
P-ERK1/2 | 1:1000 | Rabbit |
MOL | MOL name | OB% | DL |
---|---|---|---|
MOL000098 | quercetin | 46.43 | 0.28 |
MOL000358 | beta-sitosterol | 36.91 | 0.75 |
MOL000449 | Stigmasterol | 43.83 | 0.76 |
Tab.2 Drug shared genes
MOL | MOL name | OB% | DL |
---|---|---|---|
MOL000098 | quercetin | 46.43 | 0.28 |
MOL000358 | beta-sitosterol | 36.91 | 0.75 |
MOL000449 | Stigmasterol | 43.83 | 0.76 |
Active ingredient | Coregene | Bindingenergy (kcal/mol) |
---|---|---|
2-hydroxy-3-methylanthraquinone | TP53 | -4.41 |
ESR1 | -4.34 | |
2-methoxy-3-methyl-9,10-anthraquinone | TP53 | -4.73 |
ESR1 | -4.01 | |
Quercetin | TP53 | -3.05 |
Beta-sitosterol | TP53 | -3.79 |
ESR1 | -4.18 | |
Ursolic acid | TP53 | -4.49 |
ESR1 | -4.98 | |
Poriferasterol | TP53 | -4.7 |
ESR1 | -4.52 | |
Stigmasterol | TP53 | -3.97 |
ESR1 | -4.7 | |
Rivularin | TP53 | -3.2 |
Chrysin-5-methylether | TP53 | -4.26 |
7-hydroxy-5,8-dimethoxy-2-phenyl-chromone | TP53 | -3.48 |
ESR1 | -3.06 | |
5-hydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)chromone | TP53 | -3.38 |
5,7,4'-trihydroxy-6-methoxyflavanone | TP53 | -3.53 |
Moslosooflavone | TP53 | -3.18 |
eriodictyol | TP53 | -3.68 |
Salvigenin | TP53 | -3.56 |
ESR1 | -3.18 | |
Baicalin | TP53 | -3.14 |
ESR1 | -3.51 | |
Baicalein | TP53 | -3.69 |
Sitosteryl acetate | TP53 | -4.71 |
ESR1 | -4.34 | |
24-Ethylcholest-4-en-3-one | TP53 | -4.26 |
ESR1 | -3.89 | |
Dinatin | TP53 | -3.39 |
(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | TP53 | -3.38 |
ESR1 | -3.21 | |
CLR | TP53 | -4.45 |
ESR1 | -4.63 | |
Sitosterol | TP53 | -3.83 |
ESR1 | -4.25 | |
Wogonin | TP53 | -3.61 |
Tab.3 Binding energy of drug active ingredients and final core gene docking (part)
Active ingredient | Coregene | Bindingenergy (kcal/mol) |
---|---|---|
2-hydroxy-3-methylanthraquinone | TP53 | -4.41 |
ESR1 | -4.34 | |
2-methoxy-3-methyl-9,10-anthraquinone | TP53 | -4.73 |
ESR1 | -4.01 | |
Quercetin | TP53 | -3.05 |
Beta-sitosterol | TP53 | -3.79 |
ESR1 | -4.18 | |
Ursolic acid | TP53 | -4.49 |
ESR1 | -4.98 | |
Poriferasterol | TP53 | -4.7 |
ESR1 | -4.52 | |
Stigmasterol | TP53 | -3.97 |
ESR1 | -4.7 | |
Rivularin | TP53 | -3.2 |
Chrysin-5-methylether | TP53 | -4.26 |
7-hydroxy-5,8-dimethoxy-2-phenyl-chromone | TP53 | -3.48 |
ESR1 | -3.06 | |
5-hydroxy-7,8-dimethoxy-2-(4-methoxyphenyl)chromone | TP53 | -3.38 |
5,7,4'-trihydroxy-6-methoxyflavanone | TP53 | -3.53 |
Moslosooflavone | TP53 | -3.18 |
eriodictyol | TP53 | -3.68 |
Salvigenin | TP53 | -3.56 |
ESR1 | -3.18 | |
Baicalin | TP53 | -3.14 |
ESR1 | -3.51 | |
Baicalein | TP53 | -3.69 |
Sitosteryl acetate | TP53 | -4.71 |
ESR1 | -4.34 | |
24-Ethylcholest-4-en-3-one | TP53 | -4.26 |
ESR1 | -3.89 | |
Dinatin | TP53 | -3.39 |
(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one | TP53 | -3.38 |
ESR1 | -3.21 | |
CLR | TP53 | -4.45 |
ESR1 | -4.63 | |
Sitosterol | TP53 | -3.83 |
ESR1 | -4.25 | |
Wogonin | TP53 | -3.61 |
Fig.8 ROS flow cytometry analysis. A: HepG2. B: 0 µmol/L ursolic acid. C: 20 µmol/L ursolic acid. D: 40 µmol/L ursolic acid. E: 80 µmol/L ursolic acid.
Fig.10 Effects of usolic acid and sorafenib on viability of HepG2 cells. A: LO-2. B: HepG2+blank serum. C: HepG2+40 µmol/L ursolic acid. D: HepG2+1.5 µmol/L JNK inhibitor. E: HepG2+sorafenib (10 µmol/L, cultured for 24 hours). F: HepG2+40 µmol/L ursolic acid+1.5 µmol/L JNK inhibitor. G: HepG2+sorafenib (10 µmol/L, cultured for 24 hours)+1.5 µmol/L JNK inhibitor. **P<0.01 vs A.
Fig.11 Apoptosis rate of HepG2 cells with different treatments. A: LO-2. B: HepG2. C: HepG2+optimal concentration of ursolic acid. D: HepG2+optimal concentration of JNK inhibitor. E: HepG2+sorafenib (10 µmol/L, cultured for 24 hours). F: HepG2+optimal concentration of ursolic acid+optimal concentration of JNK inhibitor. G: HepG2+sorafenib (10 µmol/L, cultured for 24 hours)+optimal concentration of JNK inhibitor.
Fig.12 Relative expression levels of proteins in HepG2 cells with different treatments. A: LO-2. B: HepG2. C: HepG2+optimal concentration of ursolic acid. D: HepG2+optimal concentration of JNK inhibitor. E: HepG2+sorafenib (10 µmol/L, cultured for 24 hours). F:HepG2+optimal concentration of ursolic acid+optimal concentration of JNK inhibitor. G: HepG2+sorafenib (10 µmol/L, cultured for 24hours)+optimal concentration of JNK inhibitor *P<0.05, **P<0.01vs A.
1 | Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005, 55(2):74-108. |
2 | El-Serag, Hashem B. Hepatocellular Carcinoma[J]. J Clin Gastroenterol, 2002,35(5):72-8. |
3 | Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of primary and secondary liver cancers[J]. Semin Intervent Radiol, 2006, 23(1): 47-63. |
4 | Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma[J]. Int J Cancer, 1998, 75(3): 347-54. |
5 | Kew MC, dos Santos HA, Sherlock S. Diagnosis of primary cancer of the liver[J]. Br Med J, 1971, 4(5784): 408-11. |
6 | Li ZQ. Traditional Chinese medicine for primary liver cancer[J]. World J Gastroenterol, 1998, 4(4): 360. |
7 | Hu CJ, He J, Li GZ, et al. Analyzing hedyotis diffusa mechanisms of action from the genomics perspective[J]. Comput Meth Programs Biomed, 2019, 174: 1-8. |
8 | Qian K, Fu D, Jiang BR, et al. Mechanism of Hedyotis diffusa in the treatment of cervical cancer[J]. Front Pharmacol, 2021, 12: 808144. |
9 | Wang TS, Wang SQ, Xiao DL. A review of phytochemistry and antitumor activity of a valuable medicinal species: Scutellaria barbata[J]. J Med Plant Res, 2012,6(26):4259-75. |
10 | 杨培伟, 朱金霞, 陈欣菊, 等.半枝莲-白花蛇舌草调控Wnt/β-catenin轴对肝癌迁移和侵袭的作用机制研究[J/OL].中药药理与临床,2024,11:1-18. |
11 | Xu TF, Li SZ, Sun YF, et al. Systematically characterize the absorbed effective substances of Wutou Decoction and their metabolic pathways in rat plasma using UHPLC-Q-TOF-MS combined with a target network pharmacological analysis[J]. J Pharm Biomed Anal, 2017, 141: 95-107. |
12 | Ru JL, Li P, Wang JN, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. |
13 | Wang JH, Zhao LF, Lin P, et al. GenCLiP 2.0: a web server for functional clustering of genes and construction of molecular networks based on free terms[J]. Bioinformatics, 2014, 30(17): 2534-6. |
14 | Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-504. |
15 | Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: the human gene integrator[J]. Database, 2010, 2010: baq020. |
16 | Luo WJ, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization[J]. Bioinformatics, 2013, 29(14): 1830-1. |
17 | Martucci D, Masseroli M, Pinciroli F. Gene ontology application to genomic functional annotation, statistical analysis and knowledge mining[J]. Stud Health Technol Inform, 2004, 102: 108-31. |
18 | 王 宇, 范璐璐. BET蛋白抑制剂JQ1增强索拉非尼对肝癌细胞的增殖抑制研究[J]. 安徽医科大学学报, 2020, 55(8): 1185-8. |
19 | Bykov VJN, Eriksson SE, Bianchi, et al. Targeting mutant p53 for efficient cancer therapy[J]. Nat Rev Cancer, 2018, 18(2): 89-102. |
20 | Zhang YY, Cheng JX, Zhong C, et al. ESR1 regulates the obesity- and metabolism-differential gene MMAA to inhibit the occurrence and development of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 899969. |
21 | Elsherbiny NM, Eisa NH, El-Sherbiny M, et al. Chemo-preventive effect of crocin against experimentally-induced hepatocarcinogenesis via regulation of apoptotic and Nrf2 signaling pathways[J]. Environ Toxicol Pharmacol, 2020, 80: 103494. |
22 | Xiao SF, Tang HR, Bai Y, et al. Swertiamarin suppresses proliferation, migration, and invasion of hepatocellular carcinoma cells via negative regulation of FRAT1[J]. Eur J Histochem, 2020, 64(4): 3169. |
23 | Ripa I, Andreu S, López-Guerrero JA, et al. Membrane rafts: portals for viral entry[J]. Front Microbiol, 2021, 12: 631274. |
24 | Brábek J, Hanks SK. Assaying protein kinase activity. In: Dickson, R.C., Mendenhall, M.D. (eds) signal transduction protocols[J]. Methods Molecul Biol, 2020,284: 1302-9. |
25 | Roques M, Tirard A, DeGroot LJ. Liver protein kinase activity and triiodothyronine[J]. Endocrinology, 1977, 100(4): 967-73. |
26 | Arbuthnot P, Kew M. Hepatitis B virus and hepatocellular carcinoma[J]. Int J Exp Pathol, 2001, 82(2): 77-100. |
27 | Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-83. |
28 | Baghy K, Tátrai P, Regős E, et al. Proteoglycans in liver cancer[J]. World J Gastroenterol, 2016, 22(1):379-93. |
29 | Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury[J]. Gut, 2005, 54(7): 1024-33. |
[1] | Qiao CHU, Xiaona WANG, Jiaying XU, Huilin PENG, Yulin ZHAO, Jing ZHANG, Guoyu LU, Kai WANG. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways [J]. Journal of Southern Medical University, 2025, 45(1): 150-161. |
[2] | Xiupeng LONG, Shun TAO, Shen YANG, Suyun LI, Libing RAO, Li LI, Zhe ZHANG. Quercetin improves heart failure by inhibiting cardiomyocyte apoptosis via suppressing the MAPK signaling pathway [J]. Journal of Southern Medical University, 2025, 45(1): 187-196. |
[3] | Xingmei CHEN, Qinwen LIU, Yi LI, Xiaoyu ZHONG, Qiling FAN, Ke MA, Liuting LUO, Daogang GUAN, Zhibo ZHU. Analysis of core functional components in Yinchenhao Decoction and their pathways for treating liver fibrosis [J]. Journal of Southern Medical University, 2024, 44(8): 1508-1517. |
[4] | Shanyuan ZHANG, Qiaoyan CAI, Jianghan QI, Kaixin YIN, Chenchen HE, Zhuye GAO, Ling ZHANG, Jianfeng CHU. Pharmacodynamics of Qingxin Jieyu Granules for treatment of atherosclerosis and its regulatory mechanism for lipid metabolism [J]. Journal of Southern Medical University, 2024, 44(8): 1518-1528. |
[5] | Yuming ZHANG, Shicheng XIA, Linlin ZHANG, Mengxi CHEN, Xiaojing LIU, Qin GAO, Hongwei YE. Protective effect of Lonicerae japonicae flos extract against doxorubicin-induced liver injury in mice [J]. Journal of Southern Medical University, 2024, 44(8): 1571-1581. |
[6] | Jinjin WANG, Wenfei CUI, Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN. Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1243-1255. |
[7] | Linyue WANG, Wenyue QI, Jihua GAO, Maosheng TIAN, Jiancheng XU. Tongyangxiao Lotion promotes postoperative wound healing in a rat model of anal fistula by downregulating inflammatory factors and suppressing inflammation [J]. Journal of Southern Medical University, 2024, 44(7): 1256-1265. |
[8] | Wenxiang ZHANG, Huixian GU, Pengde CHEN, Siyu WU, Hongyan MA, Lan YAO. Compound Yuye Decoction protects diabetic rats against cardiomyopathy by inhibiting myocardial apoptosis and inflammation via regulating the PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1306-1314. |
[9] | Yan HUANG, Lulu QIN, Shaoxing GUAN, Yanping GUANG, Yuru WEI, Ailing CAO, Dongmei LI, Guining WEI, Qibiao SU. Therapeutic mechanism of aqueous extract of Semiliquidambar cathayensis Chang root for pancreatic cancer: the active components, therapeutic targets and pathways [J]. Journal of Southern Medical University, 2024, 44(7): 1336-1344. |
[10] | Zhijun REN, Jianxin DIAO, Yiting WANG. Xionggui Decoction alleviates heart failure in mice with myocardial infarction by inhibiting oxidative stress-induced cardiomyocyte apoptosis [J]. Journal of Southern Medical University, 2024, 44(7): 1416-1424. |
[11] | Ruibo LI, Ge GAO, Xi XIE, Haibin LUO. Oral submucosal fibrosis induced by active components in areca nut: a network pharmacology-based analysis and validation of the mechanism [J]. Journal of Southern Medical University, 2024, 44(5): 930-940. |
[12] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
[13] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[14] | CUI Yixin, WANG Decai, XIE Dongqing, WANG Haiming, XU Ruixin, TANG Xiaoran, ZHANG Yin. Efficacy of navel application of Jianpiwenyang Gel for chronic diarrhea of spleen and stomach weakness type: a randomized controlled trial and analysis of the mechanism [J]. Journal of Southern Medical University, 2024, 44(2): 217-225. |
[15] | Huajun CAI, Zhiqi CHEN, Wenting HU, Wei TAN, Hao WU, Chao WANG. Total flavonoids of Salvia miltiorrhiza alleviate acetaminophen-induced acute liver injury in mice by suppressing hepatocyte ferroptosis via activating the Nrf2/HO-1 signaling pathway [J]. Journal of Southern Medical University, 2024, 44(11): 2201-2208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||