Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (8): 1612-1619.doi: 10.12122/j.issn.1673-4254.2024.08.21
Previous Articles Next Articles
Weitao ZHONG(), Weisong LI, Zelin LI, Qiang WANG, Wangming ZHANG(
)
Received:
2024-04-16
Online:
2024-08-20
Published:
2024-09-06
Contact:
Wangming ZHANG
E-mail:815188247@qq.com;wzhang@vip.126.com
Weitao ZHONG, Weisong LI, Zelin LI, Qiang WANG, Wangming ZHANG. Causal relationship between sleep phenotype and idiopathic normal pressure hydrocephalus: a two-sample bidirectional Mendelian randomization study[J]. Journal of Southern Medical University, 2024, 44(8): 1612-1619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.08.21
Item | Case | Control | Author |
---|---|---|---|
Normal pressure hydrocephalus | 1456 | 409726 | FinnGen consortium |
Sleep duration | 446118 | - | Dashti HS[ |
Long sleep duration | 34184 | 305742 | Dashti HS[ |
Short sleep duration | 106192 | 305742 | Dashti HS[ |
Snoring | 152302 | 256015 | Campos AI[ |
Daytime nap | 196887 | 255746 | Dashti HS[ |
Moring person | 252287 | 150908 | Jones SE[ |
OSA | 13818 | 463035 | MRCIEU |
Insomnia | 283595 | - | Schoeler T[ |
Nap during day | 337074 | - | Neale Lab |
Tab.1 Information of the GWAS included in this study
Item | Case | Control | Author |
---|---|---|---|
Normal pressure hydrocephalus | 1456 | 409726 | FinnGen consortium |
Sleep duration | 446118 | - | Dashti HS[ |
Long sleep duration | 34184 | 305742 | Dashti HS[ |
Short sleep duration | 106192 | 305742 | Dashti HS[ |
Snoring | 152302 | 256015 | Campos AI[ |
Daytime nap | 196887 | 255746 | Dashti HS[ |
Moring person | 252287 | 150908 | Jones SE[ |
OSA | 13818 | 463035 | MRCIEU |
Insomnia | 283595 | - | Schoeler T[ |
Nap during day | 337074 | - | Neale Lab |
SNP | Chromosome | effect_allele | other_allele | beta | se | P | F |
---|---|---|---|---|---|---|---|
Sleep duration | |||||||
rs10173260 | 2 | T | C | -0.0128 | 0.0023 | 2.9×10-8 | 30.7950 |
rs10483350 | 14 | A | G | -0.0174 | 0.0029 | 1.5×10-9 | 36.6870 |
rs10761674 | 10 | C | T | 0.0123 | 0.0023 | 4.2×10-8 | 29.6241 |
…… | |||||||
Long sleep duration | |||||||
rs10899257 | 11 | G | A | -0.0056 | 0.0010 | 4.6×10-8 | 29.8890 |
rs146467757 | 17 | G | T | 0.0056 | 0.0009 | 8.1×10-11 | 42.0042 |
rs147114641 | 17 | C | A | 0.0057 | 0.0009 | 4.9×10-11 | 42.9989 |
Short sleep duration | |||||||
rs1229762 | 7 | C | T | -0.0072 | 0.0010 | 1.0×10-12 | 50.7143 |
rs12518468 | 5 | T | C | -0.0059 | 0.0010 | 8.5×10-9 | 33.2250 |
rs12567114 | 1 | G | A | 0.0063 | 0.0011 | 4.1×10-9 | 34.4974 |
…… | |||||||
Snoring | |||||||
rs10878269 | 12 | C | T | -0.0089 | 0.0011 | 2.3×10-16 | 66.4774 |
rs1108431 | 16 | C | T | -0.0066 | 0.0011 | 1.2×10-9 | 37.3157 |
rs12119849 | 1 | G | A | -0.0123 | 0.0019 | 4.1×10-11 | 43.3981 |
…… | |||||||
Daytime nap | |||||||
rs10149986 | 14 | T | G | -0.0109 | 0.0016 | 4.4×10-12 | 48.7843 |
rs10840017 | 11 | A | G | 0.0089 | 0.0015 | 2.0×10-9 | 36.4500 |
rs10875606 | 5 | C | A | 0.0074 | 0.0013 | 1.3×10-8 | 31.8238 |
…… | |||||||
Morning person | |||||||
rs10067113 | 5 | C | T | -0.0281 | 0.0047 | 2.5×10-9 | 36.3080 |
rs10123584 | 9 | G | A | 0.0270 | 0.0050 | 4.0×10-8 | 29.7517 |
rs10149448 | 14 | A | G | 0.0272 | 0.0046 | 5.6×10-9 | 34.8024 |
…… | |||||||
OSA | |||||||
rs11075985 | 16 | A | C | 0.1036 | 0.0130 | 1.9×10-15 | 63.5086 |
Insomnia | |||||||
rs10840253 | 11 | A | G | -0.0117 | 0.0020 | 4.4×10-9 | 34.4422 |
rs11679120 | 2 | A | G | 0.0516 | 0.0048 | 1.1×10-26 | 114.3790 |
rs11790060 | 9 | C | T | -0.0114 | 0.0020 | 1.5×10-8 | 32.0215 |
…… | |||||||
iNPH | |||||||
rs10828247 | 10 | G | A | -0.2544 | 0.0408 | 4.5×10-10 | 38.8929 |
rs11217863 | 11 | A | G | 0.2986 | 0.0528 | 1.5×10-8 | 32.0368 |
rs4843226 | 16 | T | C | 0.2056 | 0.0375 | 4.4×10-8 | 29.9681 |
…… | |||||||
Nap during day | |||||||
rs10840017 | 11 | G | A | -0.0100 | 0.0018 | 1.1×10-8 | 32.5966 |
rs10875622 | 5 | A | G | 0.0098 | 0.0015 | 1.9×10-11 | 45.0836 |
rs11125776 | 2 | G | T | -0.0146 | 0.0020 | 8.9×10-13 | 51.0623 |
…… |
Tab.2 Information of instrumental variables in this study
SNP | Chromosome | effect_allele | other_allele | beta | se | P | F |
---|---|---|---|---|---|---|---|
Sleep duration | |||||||
rs10173260 | 2 | T | C | -0.0128 | 0.0023 | 2.9×10-8 | 30.7950 |
rs10483350 | 14 | A | G | -0.0174 | 0.0029 | 1.5×10-9 | 36.6870 |
rs10761674 | 10 | C | T | 0.0123 | 0.0023 | 4.2×10-8 | 29.6241 |
…… | |||||||
Long sleep duration | |||||||
rs10899257 | 11 | G | A | -0.0056 | 0.0010 | 4.6×10-8 | 29.8890 |
rs146467757 | 17 | G | T | 0.0056 | 0.0009 | 8.1×10-11 | 42.0042 |
rs147114641 | 17 | C | A | 0.0057 | 0.0009 | 4.9×10-11 | 42.9989 |
Short sleep duration | |||||||
rs1229762 | 7 | C | T | -0.0072 | 0.0010 | 1.0×10-12 | 50.7143 |
rs12518468 | 5 | T | C | -0.0059 | 0.0010 | 8.5×10-9 | 33.2250 |
rs12567114 | 1 | G | A | 0.0063 | 0.0011 | 4.1×10-9 | 34.4974 |
…… | |||||||
Snoring | |||||||
rs10878269 | 12 | C | T | -0.0089 | 0.0011 | 2.3×10-16 | 66.4774 |
rs1108431 | 16 | C | T | -0.0066 | 0.0011 | 1.2×10-9 | 37.3157 |
rs12119849 | 1 | G | A | -0.0123 | 0.0019 | 4.1×10-11 | 43.3981 |
…… | |||||||
Daytime nap | |||||||
rs10149986 | 14 | T | G | -0.0109 | 0.0016 | 4.4×10-12 | 48.7843 |
rs10840017 | 11 | A | G | 0.0089 | 0.0015 | 2.0×10-9 | 36.4500 |
rs10875606 | 5 | C | A | 0.0074 | 0.0013 | 1.3×10-8 | 31.8238 |
…… | |||||||
Morning person | |||||||
rs10067113 | 5 | C | T | -0.0281 | 0.0047 | 2.5×10-9 | 36.3080 |
rs10123584 | 9 | G | A | 0.0270 | 0.0050 | 4.0×10-8 | 29.7517 |
rs10149448 | 14 | A | G | 0.0272 | 0.0046 | 5.6×10-9 | 34.8024 |
…… | |||||||
OSA | |||||||
rs11075985 | 16 | A | C | 0.1036 | 0.0130 | 1.9×10-15 | 63.5086 |
Insomnia | |||||||
rs10840253 | 11 | A | G | -0.0117 | 0.0020 | 4.4×10-9 | 34.4422 |
rs11679120 | 2 | A | G | 0.0516 | 0.0048 | 1.1×10-26 | 114.3790 |
rs11790060 | 9 | C | T | -0.0114 | 0.0020 | 1.5×10-8 | 32.0215 |
…… | |||||||
iNPH | |||||||
rs10828247 | 10 | G | A | -0.2544 | 0.0408 | 4.5×10-10 | 38.8929 |
rs11217863 | 11 | A | G | 0.2986 | 0.0528 | 1.5×10-8 | 32.0368 |
rs4843226 | 16 | T | C | 0.2056 | 0.0375 | 4.4×10-8 | 29.9681 |
…… | |||||||
Nap during day | |||||||
rs10840017 | 11 | G | A | -0.0100 | 0.0018 | 1.1×10-8 | 32.5966 |
rs10875622 | 5 | A | G | 0.0098 | 0.0015 | 1.9×10-11 | 45.0836 |
rs11125776 | 2 | G | T | -0.0146 | 0.0020 | 8.9×10-13 | 51.0623 |
…… |
Exposures SNPs | Methods | OR | 95% CI | P | Heterogeneity P | Intercept P | |
---|---|---|---|---|---|---|---|
Sleep duration 53 | IVW | 2.0487 | 0.8660-4.8465 | 0.1026 | 0.0176 | ||
WM | 2.0255 | 0.6881-5.9623 | 0.2001 | ||||
MR Egger | 0.6244 | 0.0257-15.1643 | 0.7734 | 0.0164 | 0.4516 | ||
Long sleep duration 6 | IVW | 17.8189 | 0.0017-186566 | 0.5419 | 0.2413 | ||
WM | 0.8095 | 2.7144×10-5-241406 | 0.9679 | ||||
MR Egger | 0.0003 | 1.6655×10-17-4.2×109 | 0.6238 | 0.2074 | 0.4920 | ||
Short sleep duration 17 | IVW | 0.08452 | 0.0026-2.7223 | 0.1631 | 0.2864 | ||
WM | 0.2127 | 0.0028-16.2415 | 0.4841 | ||||
MR Egger | 0.1345 | 1.02×10-14-1.78×1012 | 0.8982 | 0.2294 | 0.9762 | ||
Snoring 25 | IVW | 02725 | 0.0310-2.3986 | 0.2414 | 0.6120 | ||
WM | 0.2328 | 0.0116-4.6691 | 0.3407 | ||||
MR Egger | 0.0004 | 1.1551×10-8-11.8438 | 0.1490 | 0.6526 | 0.2148 | ||
Daytime nap 71 | IVW | 3.3393 | 1.0646-10.4742 | 0.0270 | 0.1908 | ||
WM | 3.6663 | 0.7525-17.8642 | 0.1159 | ||||
MR Egger | 2.1600 | 0.0289-161.3769 | 0.7274 | 0.1700 | 0.8379 | ||
Moring person 94 | IVW | 0.8212 | 0.6336-1.0644 | 0.1367 | 0.2386 | ||
WM | 0.9308 | 0.6400-1.3536 | 0.7073 | ||||
MR Egger | 1.6397 | 0.7706-3.4890 | 0.2025 | 0.2946 | 0.0708 | ||
OSA 1 | Wald ratio | 0.8832 | 0.4315-1.8078 | 0.7341 | - | - | |
Insomnia 14 | IVW | 0.6407 | 0.1409-2.9137 | 0.5646 | 0.7890 | ||
WM | 0.8028 | 0.1088-5.9238 | 0.8294 | ||||
MR Egger | 2.4364 | 0.0609-97.4229 | 0.6446 | 0.7710 | 0.4514 | ||
External validation | |||||||
Nap during day 48 | IVW | 2.5660 | 1.1680-5.6373 | 0.0189 | 0.9975 | ||
WM | 2.8691 | 0.6631-12.4139 | 0.1584 | ||||
MR Egger | 9.1129 | 0.1423-583.7281 | 0.3032 | 0.9970 | 0.5390 | ||
Nap during day 30 | IVW | 4.0424 | 1.5709-10.4024 | 0.0038 | 0.9886 | ||
WM | 3.4034 | 0.5439-21.2969 | 0.1905 | ||||
MR Egger | 3.0155 | 0.0277-327.7487 | 0.6481 | 0.9834 | 0.8992 |
Tab.3 Mendelian randomization results and sensitivity analysis of the association between sleep traits and iNPH
Exposures SNPs | Methods | OR | 95% CI | P | Heterogeneity P | Intercept P | |
---|---|---|---|---|---|---|---|
Sleep duration 53 | IVW | 2.0487 | 0.8660-4.8465 | 0.1026 | 0.0176 | ||
WM | 2.0255 | 0.6881-5.9623 | 0.2001 | ||||
MR Egger | 0.6244 | 0.0257-15.1643 | 0.7734 | 0.0164 | 0.4516 | ||
Long sleep duration 6 | IVW | 17.8189 | 0.0017-186566 | 0.5419 | 0.2413 | ||
WM | 0.8095 | 2.7144×10-5-241406 | 0.9679 | ||||
MR Egger | 0.0003 | 1.6655×10-17-4.2×109 | 0.6238 | 0.2074 | 0.4920 | ||
Short sleep duration 17 | IVW | 0.08452 | 0.0026-2.7223 | 0.1631 | 0.2864 | ||
WM | 0.2127 | 0.0028-16.2415 | 0.4841 | ||||
MR Egger | 0.1345 | 1.02×10-14-1.78×1012 | 0.8982 | 0.2294 | 0.9762 | ||
Snoring 25 | IVW | 02725 | 0.0310-2.3986 | 0.2414 | 0.6120 | ||
WM | 0.2328 | 0.0116-4.6691 | 0.3407 | ||||
MR Egger | 0.0004 | 1.1551×10-8-11.8438 | 0.1490 | 0.6526 | 0.2148 | ||
Daytime nap 71 | IVW | 3.3393 | 1.0646-10.4742 | 0.0270 | 0.1908 | ||
WM | 3.6663 | 0.7525-17.8642 | 0.1159 | ||||
MR Egger | 2.1600 | 0.0289-161.3769 | 0.7274 | 0.1700 | 0.8379 | ||
Moring person 94 | IVW | 0.8212 | 0.6336-1.0644 | 0.1367 | 0.2386 | ||
WM | 0.9308 | 0.6400-1.3536 | 0.7073 | ||||
MR Egger | 1.6397 | 0.7706-3.4890 | 0.2025 | 0.2946 | 0.0708 | ||
OSA 1 | Wald ratio | 0.8832 | 0.4315-1.8078 | 0.7341 | - | - | |
Insomnia 14 | IVW | 0.6407 | 0.1409-2.9137 | 0.5646 | 0.7890 | ||
WM | 0.8028 | 0.1088-5.9238 | 0.8294 | ||||
MR Egger | 2.4364 | 0.0609-97.4229 | 0.6446 | 0.7710 | 0.4514 | ||
External validation | |||||||
Nap during day 48 | IVW | 2.5660 | 1.1680-5.6373 | 0.0189 | 0.9975 | ||
WM | 2.8691 | 0.6631-12.4139 | 0.1584 | ||||
MR Egger | 9.1129 | 0.1423-583.7281 | 0.3032 | 0.9970 | 0.5390 | ||
Nap during day 30 | IVW | 4.0424 | 1.5709-10.4024 | 0.0038 | 0.9886 | ||
WM | 3.4034 | 0.5439-21.2969 | 0.1905 | ||||
MR Egger | 3.0155 | 0.0277-327.7487 | 0.6481 | 0.9834 | 0.8992 |
Outcomes | SNPs | Method | OR | 95% CI | P | Heterogeneity P | Intercept P |
---|---|---|---|---|---|---|---|
Sleep duration | 7 | IVW | 0.9921 | 0.99194-1.0705 | 0.4899 | 1.5111×10-5 | |
WM | 0.9965 | 0.9864-1.0066 | 0.4917 | ||||
MR Egger | 0.4834 | 0.0203-11.4907 | 0.8459 | 8.0244×10-6 | 0.7302 | ||
Long sleep duration | 7 | IVW | 1.0009 | 0.9982-1.0036 | 0.5303 | 0.2104 | |
WM | 1.0007 | 0.9976-1.0038 | 0.6465 | ||||
MR Egger | 1.0066 | 0.9950-1.0183 | 0.3162 | 0.2197 | 0.3658 | ||
Short sleep duration | 7 | IVW | 0.9980 | 0.9922-1.0038 | 0.5031 | 0.0011 | |
WM | 0.9974 | 0.9925-1.0024 | 0.3081 | ||||
MR Egger | 1.0077 | 0.9822-1.0339 | 0.5845 | 0.0013 | 0.4834 | ||
Snoring | 7 | IVW | 0.9998 | 0.9946-1.0051 | 0.9413 | 0.0182 | |
WM | 1.0008 | 0.9960-1.0055 | 0.7559 | ||||
MR Egger | 1.0042 | 0.9803-1.0288 | 0.7451 | 0.0109 | 0.7266 | ||
Daytime nap | 7 | IVW | 0.9999 | 0.9913-1.0085 | 0.9748 | 2.8298×10-5 | |
WM | 0.9955 | 0.9896-1.0013 | 0.1259 | ||||
MR Egger | 0.9975 | 0.9581-1.0386 | 0.9052 | 1.0907×10-5 | 0.9112 | ||
Moring person | 7 | IVW | 0.9998 | 0.9812-1.0188 | 0.0760 | 0.1022 | |
WM | 0.9999 | 0.9798-1.0205 | 0.9941 | ||||
MR Egger | 0.9324 | 0.8769-0.9915 | 0.9859 | 0.3962 | 0.0706 | ||
OSA | 7 | IVW | 0.9695 | 0.9208-1.0208 | 0.2388 | 0.1269 | |
WM | 0.9777 | 0.9232-1.0354 | 0.4408 | ||||
MR Egger | 0.9754 | 0.7750-1.2276 | 0.8403 | 0.0769 | 0.9596 | ||
External validation | |||||||
Nap during day | 7 | IVW | 1.0003 | 0.9902-1.0105 | 0.9511 | 3.7769×10-5 | |
WM | 0.9961 | 0.9892-1.0030 | 0.2654 | ||||
MR Egger | 1.0056 | 0.9593-1.0542 | 0.8245 | 1.6259×10-5 | 0.8295 |
Tab.4 Mendelian randomization results and sensitivity analysis of the association of iNPH with sleep traits
Outcomes | SNPs | Method | OR | 95% CI | P | Heterogeneity P | Intercept P |
---|---|---|---|---|---|---|---|
Sleep duration | 7 | IVW | 0.9921 | 0.99194-1.0705 | 0.4899 | 1.5111×10-5 | |
WM | 0.9965 | 0.9864-1.0066 | 0.4917 | ||||
MR Egger | 0.4834 | 0.0203-11.4907 | 0.8459 | 8.0244×10-6 | 0.7302 | ||
Long sleep duration | 7 | IVW | 1.0009 | 0.9982-1.0036 | 0.5303 | 0.2104 | |
WM | 1.0007 | 0.9976-1.0038 | 0.6465 | ||||
MR Egger | 1.0066 | 0.9950-1.0183 | 0.3162 | 0.2197 | 0.3658 | ||
Short sleep duration | 7 | IVW | 0.9980 | 0.9922-1.0038 | 0.5031 | 0.0011 | |
WM | 0.9974 | 0.9925-1.0024 | 0.3081 | ||||
MR Egger | 1.0077 | 0.9822-1.0339 | 0.5845 | 0.0013 | 0.4834 | ||
Snoring | 7 | IVW | 0.9998 | 0.9946-1.0051 | 0.9413 | 0.0182 | |
WM | 1.0008 | 0.9960-1.0055 | 0.7559 | ||||
MR Egger | 1.0042 | 0.9803-1.0288 | 0.7451 | 0.0109 | 0.7266 | ||
Daytime nap | 7 | IVW | 0.9999 | 0.9913-1.0085 | 0.9748 | 2.8298×10-5 | |
WM | 0.9955 | 0.9896-1.0013 | 0.1259 | ||||
MR Egger | 0.9975 | 0.9581-1.0386 | 0.9052 | 1.0907×10-5 | 0.9112 | ||
Moring person | 7 | IVW | 0.9998 | 0.9812-1.0188 | 0.0760 | 0.1022 | |
WM | 0.9999 | 0.9798-1.0205 | 0.9941 | ||||
MR Egger | 0.9324 | 0.8769-0.9915 | 0.9859 | 0.3962 | 0.0706 | ||
OSA | 7 | IVW | 0.9695 | 0.9208-1.0208 | 0.2388 | 0.1269 | |
WM | 0.9777 | 0.9232-1.0354 | 0.4408 | ||||
MR Egger | 0.9754 | 0.7750-1.2276 | 0.8403 | 0.0769 | 0.9596 | ||
External validation | |||||||
Nap during day | 7 | IVW | 1.0003 | 0.9902-1.0105 | 0.9511 | 3.7769×10-5 | |
WM | 0.9961 | 0.9892-1.0030 | 0.2654 | ||||
MR Egger | 1.0056 | 0.9593-1.0542 | 0.8245 | 1.6259×10-5 | 0.8295 |
1 | Graff-Radford NR, Jones DT. Normal pressure Hydrocephalus [J]. Continuum, 2019, 25(1): 165-86. |
2 | Jaraj D, Rabiei K, Marlow T, et al. Prevalence of idiopathic normal-pressure hydrocephalus[J]. Neurology, 2014, 82(16): 1449-54. |
3 | 方旭昊, 毛仁玲, 舒卫权, 等. 上海退休老年人群可能性特发性正常压力脑积水的患病率调查[J]. 老年医学与保健, 2018, 24(6): 674-7. |
4 | Román GC, Jackson RE, Fung SH, et al. Sleep-disordered breathing and idiopathic normal-pressure Hydrocephalus: recent patho-physiological advances[J]. Curr Neurol Neurosci Rep, 2019, 19(7): 39. |
5 | 中国微循环学会神经变性病专业委员会脑积水学组, 中华医学会老年医学分会, 北京神经变性病学会. 特发性正常压力脑积水临床管理中国指南(2022)[J]. 中华老年医学杂志, 2022, 41(2): 123-34. |
6 | Israelsson H, Carlberg B, Wikkelsö C, et al. Vascular risk factors in INPH: a prospective case-control study (the INPH-CRasH study)[J]. Neurology, 2017, 88(6): 577-85. |
7 | Eide PK, Pripp AH. Increased prevalence of cardiovascular disease in idiopathic normal pressure hydrocephalus patients compared to a population-based cohort from the HUNT3 survey[J]. Fluids Barriers CNS, 2014, 11: 19. |
8 | Jaraj D, Agerskov S, Rabiei K, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study[J]. Neurology, 2016, 86(7): 592-9. |
9 | Deng ZA, Wang HX, Huang KR, et al. Association between vascular risk factors and idiopathic normal pressure hydrocephalus: a Mendelian randomization study[J]. J Neurol, 2023, 270(5): 2724-33. |
10 | Román GC, Verma AK, Zhang YJ, et al. Idiopathic normal-pressure hydrocephalus and obstructive sleep apnea are frequently associated: a prospective cohort study[J]. J Neurol Sci, 2018, 395: 164-8. |
11 | Attier-Zmudka J, Sérot JM, Douadi Y, et al. Normal-pressure Hydrocephalus, sleep apnea syndrome, and quality of life in an octagenarian[J]. J Am Geriatr Soc, 2016, 64(9): 1922-3. |
12 | Riedel CS, Milan JB, Juhler M, et al. Sleep-disordered breathing is frequently associated with idiopathic normal pressure hydrocephalus but not other types of hydrocephalus[J]. Sleep, 2022, 45(3): zsab265. |
13 | McNamara ME, Millman RP, Epstein MH, et al. The association of normal-pressure hydrocephalus with obstructive sleep apnea[J]. J Geriatr Psychiatry Neurol, 1992, 5(4): 238-40. |
14 | Sindi S, Kåreholt I, Johansson L, et al. Sleep disturbances and dementia risk: a multicenter study[J]. Alzheimers Dement, 2018, 14(10): 1235-42. |
15 | Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians[J]. BMJ, 2018, 362: k601. |
16 | Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-18. |
17 | Dashti HS, Jones SE, Wood AR, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates[J]. Nat Commun, 2019, 10(1): 1100. |
18 | Campos AI, García-Marín LM, Byrne EM, et al. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank[J]. Nat Commun, 2020, 11(1): 817. |
19 | Dashti HS, Daghlas I, Lane JM, et al. Genetic determinants of daytime napping and effects on cardiometabolic health[J]. Nat Commun, 2021, 12(1): 900. |
20 | Jones SE, Lane JM, Wood AR, et al. Genome-wide association analyses of chronotype in 697, 828 individuals provides insights into circadian rhythms[J]. Nat Commun, 2019, 10(1): 343. |
21 | Schoeler T, Speed D, Porcu E, et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses[J]. Nat Hum Behav, 2023, 7(7): 1216-27. |
22 | JohnsMW. A new method for measuring daytime sleepiness: The Epworth sleepiness scale[J]. Sleep,14 (6) :540–5. |
23 | Leng Y, Yaffe K. To nap or not to nap: more questions than answers[J]. Heart, 2019, 105(23): 1768-9. |
24 | Mesas AE, Núñez de Arenas-Arroyo S, Martinez-Vizcaino V, et al. Is daytime napping an effective strategy to improve sport-related cognitive and physical performance and reduce fatigue? A systematic review and meta-analysis of randomised controlled trials[J]. Br J Sports Med, 2023, 57(7): 417-26. |
25 | Lastella M, Halson SL, Vitale JA, et al. To nap or not to nap? A systematic review evaluating napping behavior in athletes and the impact on various measures of athletic performance[J]. Nat Sci Sleep, 2021, 13: 841-62. |
26 | Leng Y, Redline S, Stone KL, et al. Objective napping, cognitive decline, and risk of cognitive impairment in older men[J]. Alzheimers Dement, 2019, 15(8): 1039-47. |
27 | Zhang H, Zhang LJ, Chen C, et al. Association between daytime napping and cognitive impairment among Chinese older population: a cross-sectional study[J]. Environ Health Prev Med, 2023, 28: 72. |
28 | Wang CS, Bangdiwala SI, Rangarajan S, et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: a study of 116 632 people from 21 countries[J]. Eur Heart J, 2019, 40(20): 1620-9. |
29 | Häusler N, Haba-Rubio J, Heinzer R, et al. Association of napping with incident cardiovascular events in a prospective cohort study[J]. Heart, 2019, 105(23): 1793-8. |
30 | Yang MJ, Zhang Z, Wang YJ, et al. Association of nap frequency with hypertension or ischemic stroke supported by prospective cohort data and Mendelian randomization in predominantly middle-aged European subjects[J]. Hypertension, 2022, 79(9): 1962-70. |
31 | Eide PK, Valnes LM, Pripp AH, et al. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus[J]. J Cereb Blood Flow Metab, 2020, 40(9): 1849-58. |
32 | Reeves BC, Karimy JK, Kundishora AJ, et al. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure Hydrocephalus [J]. Trends Mol Med, 2020, 26(3): 285-95. |
33 | Carlstrom LP, Eltanahy A, Perry A, et al. A clinical primer for the glymphatic system[J]. Brain, 2022, 145(3): 843-57. |
[1] | Wenjie LI, Yaonan HONG, Rui HUANG, Yuchen LI, Ying ZHANG, Yun ZHANG, Dijiong WU. Causal relationship between autoimmune diseases and aplastic anemia: A Mendelian randomization study [J]. Journal of Southern Medical University, 2025, 45(4): 871-879. |
[2] | Junjie GAO, Kai YE, Jing WU. Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene [J]. Journal of Southern Medical University, 2025, 45(2): 313-321. |
[3] | Chen YAO, Wenjia LI, Ruiming PANG, Jihong ZHOU. Gluteal tendinitis and primary coxarthrosis may lead to iliotibial band syndrome: a Mendelian randomization study [J]. Journal of Southern Medical University, 2024, 44(9): 1821-1830. |
[4] | Heping LI, Gaohua LI, Xuehua ZHANG, Yanan WANG. Genetic drivers for inflammatory protein markers in colorectal cancer: a Mendelian randomization approach to clinical prognosis study [J]. Journal of Southern Medical University, 2024, 44(7): 1361-1370. |
[5] | Jiajin LIU, Changhong MIAO, Jiankang XU, Weijie YU, Jixin CHEN, Haozhi TANG, Aifeng LIU. Causal relationship between gut microbiota and pigmented villonodular synovitis: a Mendelian randomization analysis [J]. Journal of Southern Medical University, 2024, 44(7): 1397-1406. |
[6] | ZHAN Wenjie, ZHAO Ling. Type 1 diabetes mellitus is likely to increase the risk of thyrotoxicdsis: a two-sample Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(8): 1396-1401. |
[7] | ZHAO Huanling, LING Yuxiao, MI Shuai, ZHU Jiahao, FAN Jiayao, YANG Ye, WANG Jing, LI Yingjun. Associations of circulating leptin levels with colorectal adenoma and colorectal cancer: a case-control and Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(12): 1989-1997. |
[8] | SU Chao, TIAN Yuxiao, ZHANG Qing, WAN Tianhao, XIA Di. Increased muscle mass increases risks of intervertebral disc degeneration: a two-sample Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(12): 2029-2034. |
[9] | . Investigating the causal relationship between human blood metabolites and coronary artery disease using two-sample Mendelian randomization [J]. Journal of Southern Medical University, 2021, 41(2): 272-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||