Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (4): 871-879.doi: 10.12122/j.issn.1673-4254.2025.04.23
Wenjie LI1(), Yaonan HONG1, Rui HUANG1, Yuchen LI1, Ying ZHANG1, Yun ZHANG1,2,3, Dijiong WU1,2,3(
)
Received:
2024-11-13
Online:
2025-04-20
Published:
2025-04-28
Contact:
Dijiong WU
E-mail:17280150095@163.com;wudijiong@zcmu.edu.cn
Supported by:
Wenjie LI, Yaonan HONG, Rui HUANG, Yuchen LI, Ying ZHANG, Yun ZHANG, Dijiong WU. Causal relationship between autoimmune diseases and aplastic anemia: A Mendelian randomization study[J]. Journal of Southern Medical University, 2025, 45(4): 871-879.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.04.23
Exposure/outcome | Year | Population | Sample size | Number of SNPs | PMID |
---|---|---|---|---|---|
RA | 2021 | 153 457 | 16 380 169 | NA | finn-b-M13_RHEUMA |
SLE | NA | 307 587 | 21 303 557 | NA | FinnGen ID: SLE_FG |
HT | 2021 | 395 640 | 24 146 037 | 34594039 | ebi-a-GCST90018855 |
GD | NA | 412 181 | 21 306 349 | NA | FinnGen ID: E4_GRAVES_STRICT |
UC | 2021 | 214 620 | 16 380 459 | NA | finn-b-K11_ULCER |
CD | NA | 411 973 | 21 306 343 | NA | FinnGen ID: K11_CD_STRICT2 |
SS | 2021 | 214 435 | 16 380 454 | NA | finn-b-M13_SJOGREN |
AIH | 2021 | 485 234 | 24 198 482 | 34594039 | ebi-a-GCST90018785 |
PBC | NA | 307 113 | 21 303 548 | NA | FinnGen ID: CHIRBIL_PRIM |
PSC | NA | 363 484 | 21 305 253 | NA | FinnGen ID: K11_CHOLANGI |
AA | 2021 | 473 500 | 24 192 378 | 34594039 | ebi-a-GCST90018794 |
Tab. 1 Sample information
Exposure/outcome | Year | Population | Sample size | Number of SNPs | PMID |
---|---|---|---|---|---|
RA | 2021 | 153 457 | 16 380 169 | NA | finn-b-M13_RHEUMA |
SLE | NA | 307 587 | 21 303 557 | NA | FinnGen ID: SLE_FG |
HT | 2021 | 395 640 | 24 146 037 | 34594039 | ebi-a-GCST90018855 |
GD | NA | 412 181 | 21 306 349 | NA | FinnGen ID: E4_GRAVES_STRICT |
UC | 2021 | 214 620 | 16 380 459 | NA | finn-b-K11_ULCER |
CD | NA | 411 973 | 21 306 343 | NA | FinnGen ID: K11_CD_STRICT2 |
SS | 2021 | 214 435 | 16 380 454 | NA | finn-b-M13_SJOGREN |
AIH | 2021 | 485 234 | 24 198 482 | 34594039 | ebi-a-GCST90018785 |
PBC | NA | 307 113 | 21 303 548 | NA | FinnGen ID: CHIRBIL_PRIM |
PSC | NA | 363 484 | 21 305 253 | NA | FinnGen ID: K11_CHOLANGI |
AA | 2021 | 473 500 | 24 192 378 | 34594039 | ebi-a-GCST90018794 |
Exposures | Outcomes | P | P.adjust |
---|---|---|---|
Rheumatoid arthritis | Aplastic anemia | 0.008<0.05 | 0.042<0.05 |
Systemic lupus erythematosus | 0.014<0.05 | 0.036<0.05 | |
Hashimoto thyroiditis | 0.008<0.05 | 0.028<0.05 | |
Graves' disease | 0.048<0.05 | 0.096 | |
Ulcerative colitis | 0.465 | 1.000 | |
Crohn's disease | 0.277 | 0.347 | |
Sicca syndrome | 0.003<0.05 | 0.035<0.05 | |
Autoimmune hepatitis | 0.149 | 0.213 | |
Primary sclerosing cholangitis | 0.343 | 0.381 | |
Primary biliary cholangitis | 0.133 | 0.222 | |
Aplastic anemia | Rheumatoid arthritis | 0.090 | 0.454 |
Systemic lupus erythematosus | 0.496 | 0.992 | |
Hashimoto thyroiditis | 0.840 | 1.000 | |
Graves' disease | 0.532 | 0.887 | |
Ulcerative colitis | 0.950 | 1.000 | |
Crohn's disease | 0.889 | 0.988 | |
Sicca syndrome | 0.049<0.05 | 0.490 | |
Autoimmune hepatitis | 0.220 | 0.735 | |
Primary sclerosing cholangitis | 0.686 | 0.981 | |
Primary biliary cholangitis | 0.369 | 0.922 |
Tab.2 IVW MR analysis and multiple calibration results
Exposures | Outcomes | P | P.adjust |
---|---|---|---|
Rheumatoid arthritis | Aplastic anemia | 0.008<0.05 | 0.042<0.05 |
Systemic lupus erythematosus | 0.014<0.05 | 0.036<0.05 | |
Hashimoto thyroiditis | 0.008<0.05 | 0.028<0.05 | |
Graves' disease | 0.048<0.05 | 0.096 | |
Ulcerative colitis | 0.465 | 1.000 | |
Crohn's disease | 0.277 | 0.347 | |
Sicca syndrome | 0.003<0.05 | 0.035<0.05 | |
Autoimmune hepatitis | 0.149 | 0.213 | |
Primary sclerosing cholangitis | 0.343 | 0.381 | |
Primary biliary cholangitis | 0.133 | 0.222 | |
Aplastic anemia | Rheumatoid arthritis | 0.090 | 0.454 |
Systemic lupus erythematosus | 0.496 | 0.992 | |
Hashimoto thyroiditis | 0.840 | 1.000 | |
Graves' disease | 0.532 | 0.887 | |
Ulcerative colitis | 0.950 | 1.000 | |
Crohn's disease | 0.889 | 0.988 | |
Sicca syndrome | 0.049<0.05 | 0.490 | |
Autoimmune hepatitis | 0.220 | 0.735 | |
Primary sclerosing cholangitis | 0.686 | 0.981 | |
Primary biliary cholangitis | 0.369 | 0.922 |
Exposures | MR method | P (Heterogeneity) | Pleiotropy | |
---|---|---|---|---|
P (MR Egger) | P (MR PRESSO) | |||
Rheumatoid arthritis | MR Egger | 0.148 | 0.805 | 0.356 |
IVW | 0.213 | |||
Systemic lupus erythematosus | MR Egger | 0.113 | 0.766 | 0.237 |
IVW | 0.186 | |||
Hashimoto thyroiditis | MR Egger | 0.207 | 0.870 | 0.363 |
IVW | 0.299 | |||
Graves' disease | MR Egger | 0.059 | 0.867 | 0.097 |
IVW | 0.087 | |||
Ulcerative colitis | MR Egger | 0.902 | 0.541 | 0.937 |
IVW | 0.902 | |||
Crohn's disease | MR Egger | 0.118 | 0.558 | 0.159 |
IVW | 0.146 | |||
Sicca syndrome | MR Egger | 0.043 | 0.957 | 0.254 |
IVW | 0.098 | |||
Autoimmune hepatitis | MR Egger | 0.728 | 0.520 | 0.763 |
IVW | 0.755 | |||
Primary sclerosing cholangitis | MR Egger | 0.348 | 0.525 | 0.385 |
IVW | 0.387 | |||
Primary biliary cholangitis | MR Egger | 0.764 | 0.849 | NA |
IVW | 0.928 |
Tab.3 Heterogeneity and pleiotropy analysis
Exposures | MR method | P (Heterogeneity) | Pleiotropy | |
---|---|---|---|---|
P (MR Egger) | P (MR PRESSO) | |||
Rheumatoid arthritis | MR Egger | 0.148 | 0.805 | 0.356 |
IVW | 0.213 | |||
Systemic lupus erythematosus | MR Egger | 0.113 | 0.766 | 0.237 |
IVW | 0.186 | |||
Hashimoto thyroiditis | MR Egger | 0.207 | 0.870 | 0.363 |
IVW | 0.299 | |||
Graves' disease | MR Egger | 0.059 | 0.867 | 0.097 |
IVW | 0.087 | |||
Ulcerative colitis | MR Egger | 0.902 | 0.541 | 0.937 |
IVW | 0.902 | |||
Crohn's disease | MR Egger | 0.118 | 0.558 | 0.159 |
IVW | 0.146 | |||
Sicca syndrome | MR Egger | 0.043 | 0.957 | 0.254 |
IVW | 0.098 | |||
Autoimmune hepatitis | MR Egger | 0.728 | 0.520 | 0.763 |
IVW | 0.755 | |||
Primary sclerosing cholangitis | MR Egger | 0.348 | 0.525 | 0.385 |
IVW | 0.387 | |||
Primary biliary cholangitis | MR Egger | 0.764 | 0.849 | NA |
IVW | 0.928 |
Fig.4 scatter plots of the association of rheumatoid arthritis (A), systemic lupus erythematosus (B), Hashimoto thyroiditis (C), and Sicca syndrome (D) with AA.
1 | Wang L, Liu H. Pathogenesis of aplastic Anemia[J]. Hematology, 2019, 24(1): 559-66. |
2 | 王金鑫, 李昌年, 王 腾, 等. 再生障碍性贫血患者外周血全外显子组高通量基因测序分析[J]. 中国病理生理杂志, 2024, 40(4): 729-34. DOI: 10.3969/j.issn.1000-4718.2024.04.019 |
3 | Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19(8): 509-24. |
4 | 中华医学会血液学分会红细胞疾病(贫 血)学组. 再生障碍性贫血诊断与治疗中国指南(2022年版)[J]. 中华血液学杂志, 2022, 43(11): 881-8. |
5 | Kelkka T, Tyster M, Lundgren S, et al. Anti-COX-2 autoantibody is a novel biomarker of immune aplastic Anemia [J]. Leukemia, 2022, 36(9): 2317-27. |
6 | Baumelou E, Guiguet M, Mary JY. Epidemiology of aplastic Anemia in France: a case-control study. I. medical history and medication use. the French cooperative group for epidemiological study of aplastic Anemia [J]. Blood, 1993, 81(6): 1471-8. |
7 | Stalder MP, Rovó A, Halter J, et al. Aplastic Anemia and conco-mitant autoimmune diseases[J]. Ann Hematol, 2009, 88(7): 659-65. |
8 | Best WR. Drug-associated blood dyscrasias[J]. Jama, 1963, 185(4): 286. |
9 | 周广宇, 刘冬娜, 施 丽. 类风湿关节炎合并再生障碍性贫血临床特点分析[J]. 中国实用医药, 2007, 2(32): 97. DOI: 10.3969/j.issn.1673-7555.2007.32.070 |
10 | Chalayer É, Ffrench M, Cathébras P. Aplastic Anemia as a feature of systemic lupus erythematosus: a case report and literature review[J]. Rheumatol Int, 2015, 35(6): 1073-82. |
11 | Yang J, Lin W, Ma Y, et al. Investigation of the causal association between Parkinson's disease and autoimmune disorders: a bidirectional Mendelian randomization study[J]. Front Immunol, 2024, 15: 1370831. |
12 | Kaushansky K, A.Lichtman M, T.Prchal J, et al. Williams Hematology,10th ed[M]. New York: McGraw-Hill Education, 2021: 563-8. |
13 | Zhang Y, Xiong Y, Shen S, et al. Causal association between tea consumption and kidney function: a mendelian randomization study[J]. Front Nutr, 2022, 9: 801591. |
14 | Zhou Y, Yin X, Wang C, et al. Gene association analysis to determine the causal relationship between immune-mediated inflammatory diseases and frozen shoulder[J]. Medicine: Baltimore, 2024, 103(19): e38055. |
15 | Yin M, Xu W, Pang J, et al. Causal relationship between osteoarthritis with atrial fibrillation and coronary atherosclerosis: a bidirectional Mendelian randomization study of European ancestry[J]. Front Cardiovasc Med, 2023, 10: 1213672. |
16 | Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-8. |
17 | Wang J, Erlacher M, Fernandez-Orth J. The role of inflammation in hematopoiesis and bone marrow failure: What can we learn from mouse models[J]? Front Immunol, 2022, 13: 951937. |
18 | Bugatti S, Manzo A, Caporali R, et al. Inflammatory lesions in the bone marrow of rheumatoid arthritis patients: a morphological perspective[J]. Arthritis Res Ther, 2012, 14(6): 229. |
19 | Papadaki HA, Boumpas DT, Gibson FM, et al. Increased apoptosis of bone marrow CD34+ cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus[J]. Br J Haematol, 2001, 115(1): 167-74. |
20 | 章赛芜, 武 洵. 原发性干燥综合征并发贫血28例临床研究[J]. 临床血液学杂志, 2013, 26(1): 40-1. |
21 | Henry DA. Side-effects of non-steroidal anti-inflammatory drugs[J]. Baillière's Clin Rheumatol, 1988, 2(2): 425-54. |
22 | Wu JL, Huang H, Yu XJ. How does Hashimoto's thyroiditis affect bone metabolism[J]? Rev Endocr Metab Disord, 2023, 24(2): 191-205. |
23 | Chivasso C, Sarrand J, Perret J, et al. The involvement of innate and adaptive immunity in the initiation and perpetuation of sjögren's syndrome[J]. Int J Mol Sci, 2021, 22(2): E658. |
24 | Qin SS, Jiang YX, Ou Y, et al. Mendelian randomization of circulating proteome identifies IFN‑γ as a druggable target in aplastic Anemia [J]. Ann Hematol, 2024, 103(7): 2245-56. |
25 | Yamada H. Adaptive immunity in the joint of rheumatoid arthritis[J]. Immunol Med, 2022, 45(1): 1-11. |
26 | Liu W, Zhang S, Wang J. IFN-γ, should not be ignored in SLE[J]. Front Immunol, 2022, 13: 954706. |
27 | Zhang Y, Hussain M, Yang X, et al. Identification of moesin as a novel autoantigen in patients with sjögren's syndrome[J]. Protein Pept Lett, 2018, 25(4): 350-5. |
28 | Takamatsu H, Feng XM, Chuhjo T, et al. Specific antibodies to moesin, a membrane-cytoskeleton linker protein, are frequently detected in patients with acquired aplastic Anemia [J]. Blood, 2007, 109(6): 2514-20. |
29 | Wagatsuma M, Kimura M, Suzuki R, et al. Ezrin, radixin and moesin are possible autoimmune antigens in rheumatoid arthritis[J]. Mol Immunol, 1996, 33(15): 1171-6. |
30 | Kulasekararaj AG. Regulatory cells in immune-mediated aplastic anaemia-not Tregs but Bregs [J]. Br J Haematol, 2020, 190(4): 486-7. |
31 | Luo J, Su QY, Zhang Y, et al. pos0750 the status of bregs and breg-related cytokines in patients with systemic lupus erythematosus[J]. Ann Rheum Dis, 2022, 81: 660-1. |
32 | Luo J, Su QY, Li Q, et al. pos0455 the status of breg cells and breg-related cytokines in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2023, 82: 484-5. |
33 | Wang L, Cheng M, Wang Y, et al. Fasting-activated ventrolateral medulla neurons regulate T cell homing and suppress autoimmune disease in mice[J]. Nat Neurosci, 2024, 27(3): 462-70. |
34 | Kurosawa M, Arakaki R, Yamada A, et al. NF-κB2 controls the migratory activity of memory T cells by regulating expression of CXCR4 in a mouse model of sjögren's syndrome[J]. Arthritis Rheumatol, 2017, 69(11): 2193-202. |
35 | Arieta Kuksin C, Gonzalez-Perez G, Minter LM. CXCR4 expression on pathogenic T cells facilitates their bone marrow infiltration in a mouse model of aplastic Anemia [J]. Blood, 2015, 125(13): 2087-94. |
36 | Peng L, Zhu N, Mao J, et al. Expression levels of CXCR4 and CXCL12 in patients with rheumatoid arthritis and its correlation with disease activity[J]. Exp Ther Med, 2020, 20(3): 1925-34. |
37 | Wang A, Guilpain P, Chong BF, et al. Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2010, 62(11): 3436-46. |
38 | Zheng W, Tang Y, Cheng M, et al. Dysregulated CXCL12 expression in osteoblasts promotes B-lymphocytes preferentially homing to the bone marrow in MRL/lpr mice[J]. Autoimmunity, 2024, 57(1): 2319207. |
[1] | Junjie GAO, Kai YE, Jing WU. Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene [J]. Journal of Southern Medical University, 2025, 45(2): 313-321. |
[2] | Chen YAO, Wenjia LI, Ruiming PANG, Jihong ZHOU. Gluteal tendinitis and primary coxarthrosis may lead to iliotibial band syndrome: a Mendelian randomization study [J]. Journal of Southern Medical University, 2024, 44(9): 1821-1830. |
[3] | Weitao ZHONG, Weisong LI, Zelin LI, Qiang WANG, Wangming ZHANG. Causal relationship between sleep phenotype and idiopathic normal pressure hydrocephalus: a two-sample bidirectional Mendelian randomization study [J]. Journal of Southern Medical University, 2024, 44(8): 1612-1619. |
[4] | Heping LI, Gaohua LI, Xuehua ZHANG, Yanan WANG. Genetic drivers for inflammatory protein markers in colorectal cancer: a Mendelian randomization approach to clinical prognosis study [J]. Journal of Southern Medical University, 2024, 44(7): 1361-1370. |
[5] | Jiajin LIU, Changhong MIAO, Jiankang XU, Weijie YU, Jixin CHEN, Haozhi TANG, Aifeng LIU. Causal relationship between gut microbiota and pigmented villonodular synovitis: a Mendelian randomization analysis [J]. Journal of Southern Medical University, 2024, 44(7): 1397-1406. |
[6] | ZHAN Wenjie, ZHAO Ling. Type 1 diabetes mellitus is likely to increase the risk of thyrotoxicdsis: a two-sample Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(8): 1396-1401. |
[7] | ZHAO Huanling, LING Yuxiao, MI Shuai, ZHU Jiahao, FAN Jiayao, YANG Ye, WANG Jing, LI Yingjun. Associations of circulating leptin levels with colorectal adenoma and colorectal cancer: a case-control and Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(12): 1989-1997. |
[8] | SU Chao, TIAN Yuxiao, ZHANG Qing, WAN Tianhao, XIA Di. Increased muscle mass increases risks of intervertebral disc degeneration: a two-sample Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(12): 2029-2034. |
[9] | ZHAN Weijie, YAN Tao, GAO Jiawen, SONG Minkai, WANG Ting, LIN Fei, ZHOU Haiyu, LI Li, ZHANG Chao. Role of circular RNAs in immune-related diseases [J]. Journal of Southern Medical University, 2022, 42(2): 163-170. |
[10] | . Investigating the causal relationship between human blood metabolites and coronary artery disease using two-sample Mendelian randomization [J]. Journal of Southern Medical University, 2021, 41(2): 272-278. |
[11] | . Tetramethylpyrazine promotes bone marrow repair in a C57 mouse model of X-rayinduced immune-mediated bone marrow failure [J]. Journal of Southern Medical University, 2019, 39(08): 957-. |
[12] | . Establishment of New Zealand rabbit models of aplastic anemia [J]. Journal of Southern Medical University, 2017, 37(12): 1660-. |
[13] |
.
Therapeutic effects of porcine versus rabbit antithymocyte globulins for treatment of severe aplastic anemia [J]. Journal of Southern Medical University, 2016, 36(03): 303-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||