Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2475-2482.doi: 10.12122/j.issn.1673-4254.2025.11.20
Xiangxiang DENG1,2(
), Jia WANG2,3, Mi XIONG1,2, Ting WANG2, Yongjian YANG2, De LI2, Xiongshan SUN1,2(
)
Received:2025-03-15
Online:2025-11-20
Published:2025-11-28
Contact:
Xiongshan SUN
E-mail:xiangd19999@163.com;shan19910927@sina.com
Xiangxiang DENG, Jia WANG, Mi XIONG, Ting WANG, Yongjian YANG, De LI, Xiongshan SUN. Silencing DDX17 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in vitro by decreasing mTORC1 activity[J]. Journal of Southern Medical University, 2025, 45(11): 2475-2482.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.20
Fig.2 Effect of DDX17 silecing on proliferation and migration of PASMCs exposed to hypoxia (n=3, Mean±SD). A: DDX17 mRNA level in PASMCs. B, C: Protein expression level of DDX17 in PASMCs. D, E: Scratch healing assay for assessing changes in migration of PASMCs after the treatments (scale bar=100 µm. F, G: Transwell assay for assessing changes in migration ability of PASMCs after the treatments (scale bar=100 µm). H, I: Results of immunofluorescence staining of Ki-67 for assessing proliferative ability of PASMCs (scale bar=200 μm). *P<0.05, **P<0.01 vs CON group; #P<0.05, ##P<0.01 vs Hy group.
Fig.4 Role of mTORC1 in DDX17 silencing-mediated inhibition of proliferation and migration of PASMCs (n=3, Mean±SD). A-C: Protein levels of p-4EBP1 and p-S6 in the cells detected using Western blotting. D, E: Scratch healing assay for assessing migration ability of PASMCs (scale bar=100 µm). F, G: Transwell assay for assessing migration ability of PASMCs (scale bar=100 µm). H, I: Immunofluorescence staining of Ki-67 for assessing proliferative ability of PASMCs (scale bar=200 µm). *P<0.05, **P<0.01 vs Hy group; #P <0.05, ##P<0.01 vs Hy+si-Ddx17 group.
Fig.5 DDX17 silencing ameliorates MCT-induced pulmonary vascular remodeling in mice (n=3, Mean±SD). A, B: Protein levels of DDX17 in the pulmonary artery of the mice detected using Western blotting. C: Morphological changes in pulmonary arteries of the mice (HE staining, ×40). D: Percentage of pulmonary wall thickness/total thickness in the mice in different groups; *P<0.05, ***P<0. 001 vs CON group; #P<0.05, ##P<0.01 vs MCT group.
| [1] | Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913. doi:10.1183/13993003.01913-2018 |
| [2] | Hoeper MM, Badagliacca R, Berger RMF, et al. Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS).[J]. Eur Heart J, 2023, 44(15):1312. |
| [3] | Maron BA, Galiè N. Pulmonary Arterial Hypertension Diagnosis, Treatment, and Clinical Management in the Contemporary Era[J]. JAMA Cardiol, 2016, 1(9): 1056-1065. doi:10.1001/jamacardio.2016.4471 |
| [4] | Hurdman J, Condliffe R, Elliot CA, et al. ASPIRE registry: assessing the Spectrum of Pulmonary hypertension Identified at a REferral centre[J]. Eur Respir J, 2012, 39(4): 945-55. doi:10.1183/09031936.00078411 |
| [5] | Zheng R, Xu T, Wang X, et al. Stem cell therapy in pulmonary hypertension: current practice and future opportunities[J]. Eur Respir Rev, 2023, 32(169): 230112. doi:10.1183/16000617.0112-2023 |
| [6] | Xu K, Sun S, Yan M, et al. DDX5 and DDX17-multifaceted proteins in the regulation of tumorigenesis and tumor progression[J]. Front Oncol, 2022, 12: 943032. doi:10.3389/fonc.2022.943032 |
| [7] | Wang SB, Narendran S, Hirahara S, et al. DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retro-transposon RNAs[J]. Sci Immunol, 2021, 6(66): eabi4493. doi:10.1126/sciimmunol.abi4493 |
| [8] | Caretti G, Schiltz RL, Dilworth FJ, et al. The RNA helicases p68/p72 and the noncoding RNA sra are coregulators of MyoD and skeletal muscle differentiation[J]. Dev Cell, 2006, 11(4): 547-60. doi:10.1016/j.devcel.2006.08.003 |
| [9] | Liu H, Gao X, Zhang W, et al. DDX17-mediated upregulation of CXCL8 promotes hepatocellular carcinoma progression via co-activating β-catenin/NF-κB complex[J]. Int J Biol Sci, 2025, 21(3): 1342-60. doi:10.7150/ijbs.104165 |
| [10] | Fuller-Pace FV. DEAD box RNA helicase functions in cancer[J]. RNA Biol, 2013, 10(1): 121-32. doi:10.4161/rna.23312 |
| [11] | Liu X, Li L, Geng C, et al. DDX17 promotes the growth and metastasis of lung adenocarcinoma[J]. Cell Death Discov, 2022, 8(1): 425. doi:10.1038/s41420-022-01215-x |
| [12] | Zhao G, Wang Q, Zhang Y, et al. DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer[J]. Cell Death Dis, 2023, 14(1): 1. doi:10.1038/s41419-022-05508-y |
| [13] | Zhou HZ, Li F, Cheng ST, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis[J]. Hepatology, 2022, 75(4): 847-65. doi:10.1002/hep.32195 |
| [14] | Wu XC, Yan WG, Ji ZG, et al. Long noncoding RNA SNHG20 promotes prostate cancer progression via upregulating DDX17[J]. Arch Med Sci, 2021, 17(6): 1752-65. |
| [15] | Yan M, Gao J, Lan M, et al. DEAD-box helicase 17 (DDX17) protects cardiac function by promoting mitochondrial homeostasis in heart failure[J]. Signal Transduct Target Ther, 2024, 9(1): 127. doi:10.1038/s41392-024-01831-2 |
| [16] | Lin B, Wang F, Wang J, et al. The protective role of p72 in doxorubicin-induced cardiomyocytes injury in vitro [J]. Mol Med Rep, 2016, 14(4): 3376-80. doi:10.3892/mmr.2016.5600 |
| [17] | Gao R, Wang L, Bei Y, et al. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury[J]. Circulation, 2021, 144(4): 303-17. doi:10.1161/circulationaha.120.050446 |
| [18] | Liu GB, Cheng YX, Li HM, et al. Ghrelin promotes cardiomyocyte differentiation of adipose tissue-derived mesenchymal stem cells by DDX17-mediated regulation of the SFRP4/Wnt/β-catenin axis[J]. Mol Med Rep, 2023, 28(3): 164. doi:10.3892/mmr.2023.13050 |
| [19] | He C, Zhang G, Lu Y, et al. DDX17 modulates the expression and alternative splicing of genes involved in apoptosis and proliferation in lung adenocarcinoma cells[J]. PeerJ, 2022, 10: e13895. doi:10.7717/peerj.13895 |
| [20] | Sun X, Nakajima E, Norbrun C, et al. Chitinase 3 like 1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension[J]. JCI Insight, 2022, 7(18): e159578. doi:10.1172/jci.insight.159578 |
| [21] | Pullamsetti SS, Savai R, Seeger W, et al. Translational advances in the field of pulmonary hypertension. from cancer biology to new pulmonary arterial hypertension therapeutics. targeting cell growth and proliferation signaling hubs[J]. Am J Respir Crit Care Med, 2017, 195(4): 425-37. doi:10.1164/rccm.201606-1226pp |
| [22] | Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension: pathogenesis and clinical management[J]. BMJ, 2018, 360: j5492. doi:10.1136/bmj.j5492 |
| [23] | Song Y, Jia H, Ma Q, et al. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective[J]. Front Physiol, 2024, 15: 1461519. doi:10.3389/fphys.2024.1461519 |
| [24] | Yang Q, Jankowsky E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1[J]. Biochemistry, 2005, 44(41): 13591-601. doi:10.1021/bi0508946 |
| [25] | Xing Z, Ma WK, Tran EJ. The DDX5/Dbp2 subfamily of DEAD-box RNA helicases[J]. Wiley Interdiscip Rev RNA, 2019, 10(2): e1519. doi:10.1002/wrna.1519 |
| [26] | Kay BK, Williamson MP, Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains[J]. FASEB J, 2000, 14(2): 231-41. doi:10.1096/fasebj.14.2.231 |
| [27] | Mori M, Triboulet R, Mohseni M, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer[J]. Cell, 2014, 156(5): 893-906. doi:10.1016/j.cell.2013.12.043 |
| [28] | Sun Q, Chen X, Ma J, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J]. Proc Natl Acad Sci USA, 2011, 108(10): 4129-34. doi:10.1073/pnas.1014769108 |
| [29] | Yang Q, Guan KL. Expanding mTOR signaling[J]. Cell Res, 2007, 17(8): 666-81. doi:10.1038/cr.2007.64 |
| [30] | Ayuk SM, Abrahamse H. mTOR signaling pathway in cancer targets photodynamic therapy in vitro [J]. Cells, 2019, 8(5): E431. doi:10.3390/cells8050431 |
| [31] | Houssaini A, Abid S, Derumeaux G, et al. Selective tuberous sclerosis complex 1 gene deletion in smooth muscle activates mammalian target of rapamycin signaling and induces pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2016, 55(3): 352-67. doi:10.1165/rcmb.2015-0339oc |
| [32] | He Y, Zuo C, Jia D, et al. Loss of DP1 aggravates vascular remodeling in pulmonary arterial hypertension via mTORC1 signaling[J]. Am J Respir Crit Care Med, 2020, 201(10): 1263-76. doi:10.1164/rccm.201911-2137oc |
| [33] | Goncharova EA, Simon MA, Yuan JX. mTORC1 in pulmonary arterial hypertension. At the crossroads between vasoconstriction and vascular remodeling [J] ?Am J Respir Crit Care Med, 2020, 201(10): 1177-9. doi:10.1164/rccm.202001-0087ed |
| [34] | Tang HY, Wu K, Wang J, et al. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension[J]. JACC Basic Transl Sci, 2018, 3(6): 744-62. doi:10.1016/j.jacbts.2018.08.009 |
| [35] | Wang G, Chen L, Lei X, et al. Role of FLCN phosphorylation in insulin-mediated mTORC1 activation and tumorigenesis[J]. Adv Sci: Weinh, 2023, 10(17): e2206826. doi:10.1002/advs.202206826 |
| [36] | Yang H, Jiang X, Li B, et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40[J]. Nature, 2017, 552(7685): 368-73. doi:10.1038/nature25023 |
| [37] | Lai M, Zou W, Han Z, et al. Tsc1 regulates tight junction independent of mTORC1[J]. Proc Natl Acad Sci USA, 2021, 118(30): e2020891118. doi:10.1073/pnas.2020891118 |
| [1] | Ziwei YANG, Chang LÜ, Zhu DONG, Shulei JI, Shenghui BI, Xuehua ZHANG, Xiaowu WANG. Rosa laevigata Michx. inhibits pulmonary arterial smooth muscle cell proliferation in hypertension by modulating the Src-AKT1 axis [J]. Journal of Southern Medical University, 2025, 45(9): 1889-1902. |
| [2] | Ting XIE, Yunyun WANG, Ting GUO, Chunhua YUAN. The peptide toxin components and nucleotide metabolites in Macrothele raveni venom synergistically inhibit cancer cell proliferation by activating the pro-apoptotic pathways [J]. Journal of Southern Medical University, 2025, 45(7): 1460-1470. |
| [3] | Xiuying GONG, Shunfu HOU, Miaomiao ZHAO, Xiaona WANG, Zhihan ZHANG, Qinghua LIU, Chonggao YIN, Hongli LI. LncRNA SNHG15 promotes proliferation, migration and invasion of lung adenocarcinoma cells by regulating COX6B1 through sponge adsorption of miR-30b-3p [J]. Journal of Southern Medical University, 2025, 45(7): 1498-1505. |
| [4] | Yumei ZENG, Jike LI, Zhongxi HUANG, Yibo ZHOU. Villin-like protein VILL suppresses proliferation of nasopharyngeal carcinoma cells by interacting with LMO7 protein [J]. Journal of Southern Medical University, 2025, 45(5): 954-961. |
| [5] | Yaqing YUE, Zhaoxia MU, Xibo WANG, Yan LIU. Aurora-A overexpression promotes cervical cancer cell invasion and metastasis by activating the NF-κBp65/ARPC4 signaling axis [J]. Journal of Southern Medical University, 2025, 45(4): 837-843. |
| [6] | Yi ZHANG, Yu SHEN, Zhiqiang WAN, Song TAO, Yakui LIU, Shuanhu WANG. High expression of CDKN3 promotes migration and invasion of gastric cancer cells by regulating the p53/NF-κB signaling pathway and inhibiting cell apoptosis [J]. Journal of Southern Medical University, 2025, 45(4): 853-861. |
| [7] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
| [8] | Lu TAO, Zhuoli WEI, Yueyue WANG, Ping XIANG. CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition [J]. Journal of Southern Medical University, 2025, 45(3): 566-576. |
| [9] | Qingqing HUANG, Wenjing ZHANG, Xiaofeng ZHANG, Lian WANG, Xue SONG, Zhijun GENG, Lugen ZUO, Yueyue WANG, Jing LI, Jianguo HU. High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is associated with poor patient prognosis [J]. Journal of Southern Medical University, 2025, 45(3): 622-631. |
| [10] | Jinhua ZOU, Hui WANG, Dongyan ZHANG. SLC1A5 overexpression accelerates progression of hepatocellular carcinoma by promoting M2 polarization of macrophages [J]. Journal of Southern Medical University, 2025, 45(2): 269-284. |
| [11] | Yu BIN, Ziwen LI, Suwei ZUO, Sinuo SUN, Min LI, Jiayin SONG, Xu LIN, Gang XUE, Jingfang WU. High expression of apolipoprotein C1 promotes proliferation and inhibits apoptosis of papillary thyroid carcinoma cells by activating the JAK2/STAT3 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(2): 359-370. |
| [12] | Zhoufang CAO, Yuan WANG, Mengna WANG, Yue SUN, Feifei LIU. LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(2): 371-378. |
| [13] | Wenxin JIA, Shuhua HUO, Jiaping TANG, Yuzhen LIU, Baosheng ZHAO. Inhibition of BRD4 promotes migration of esophageal squamous cell carcinoma cells with low ACC1 expression [J]. Journal of Southern Medical University, 2025, 45(10): 2258-2269. |
| [14] | Xiaohua CHEN, Hui LU, Ziliang WANG, Lian WANG, Yongsheng XIA, Zhijun GENG, Xiaofeng ZHANG, Xue SONG, Yueyue WANG, Jing LI, Jianguo HU, Lugen ZUO. Role of Abelson interactor 2 in progression and prognosis of gastric cancer and its regulatory mechanisms [J]. Journal of Southern Medical University, 2024, 44(9): 1653-1661. |
| [15] | Liangjun XUE, Qiuyu TAN, Jingwen XU, Lu FENG, Wenjin LI, Liang YAN, Yulei LI. MiR-6838-5p overexpression inhibits proliferation of breast cancer MCF-7 cells by downregulating DDR1 expression [J]. Journal of Southern Medical University, 2024, 44(9): 1677-1684. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||