Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (7): 1355-1360.doi: 10.12122/j.issn.1673-4254.2024.07.15
Previous Articles Next Articles
Mengdong ZHENG(), Yan LIU, Jiaojiao LIU, Qiaozhen KANG(
), Ting WANG(
)
Received:
2023-12-07
Online:
2024-07-20
Published:
2024-07-25
Contact:
Qiaozhen KANG, Ting WANG
E-mail:mdz416242767@163.com;qzkang@zzu.edu.cn;tingwang@zzu.edu.cn
Supported by:
Mengdong ZHENG, Yan LIU, Jiaojiao LIU, Qiaozhen KANG, Ting WANG. Effect of deletion of protein 4.1R on proliferation, apoptosis and glycolysis of hepatocyte HL-7702 cells[J]. Journal of Southern Medical University, 2024, 44(7): 1355-1360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.07.15
sgRNA | Target sequence | PAM sequence |
---|---|---|
sgRNA1 | 5'- TTTATGTCTTCAGCTTCGGC -3' 3'- AAATACAGAAGTCGAAGCCG -5' | NGG |
sgRNA2 | 5'- ACTGGCCCCGAATCAGACCA -3' 3'- TGACCGGGGCTTAGTCTGGT -5' | |
sgRNA3 | 5'- CGAGCGTACAGCAAGTAAAC -3' 3'- GCTCGCATGTCGTTCATTTG -5' |
Tab.1 sgRNA sequences targeting the 4.1R gene
sgRNA | Target sequence | PAM sequence |
---|---|---|
sgRNA1 | 5'- TTTATGTCTTCAGCTTCGGC -3' 3'- AAATACAGAAGTCGAAGCCG -5' | NGG |
sgRNA2 | 5'- ACTGGCCCCGAATCAGACCA -3' 3'- TGACCGGGGCTTAGTCTGGT -5' | |
sgRNA3 | 5'- CGAGCGTACAGCAAGTAAAC -3' 3'- GCTCGCATGTCGTTCATTTG -5' |
Gene | Primer sequence 5'-3' |
---|---|
HK2 | Forward: GACCAACTTCCGTGTGCTTT |
Reverse: TCCATGAAGTTAGCCAGGCA | |
PFKL | Forward: ATCTACGAGGGCTATGAGGGC |
Reverse: GAGCGCTGCCAATGATAGTG | |
PKM2 | Forward: GGAAGCCTGTCATCTGTGCT |
Reverse: TCCCCTTTGGCTGTTTCTCC | |
LDHA | Forward: ATGGCAACTCTAAAGGATCAGC |
Reverse: CCAACCCCAACAACTGTAATCT | |
β-actin | Forward: CGTGCGTGACATTAAGGAGAAG |
Reverse: GGAAGGAAGGCTGGAAGAGTG |
Tab.2 Primer sequences for RT-qPCR of the key regulatory enzymes in glycolysis
Gene | Primer sequence 5'-3' |
---|---|
HK2 | Forward: GACCAACTTCCGTGTGCTTT |
Reverse: TCCATGAAGTTAGCCAGGCA | |
PFKL | Forward: ATCTACGAGGGCTATGAGGGC |
Reverse: GAGCGCTGCCAATGATAGTG | |
PKM2 | Forward: GGAAGCCTGTCATCTGTGCT |
Reverse: TCCCCTTTGGCTGTTTCTCC | |
LDHA | Forward: ATGGCAACTCTAAAGGATCAGC |
Reverse: CCAACCCCAACAACTGTAATCT | |
β-actin | Forward: CGTGCGTGACATTAAGGAGAAG |
Reverse: GGAAGGAAGGCTGGAAGAGTG |
Fig.1 Construction of 4.1R-/- HL-7702 cell line. A: Identification of protein 4.1R expression in HL-7702 cells. B: Schematic representation of the locus of sgRNA targeting the 4.1R gene. C: Sequencing results of recombinant vector px330-mCherry-sgRNA. D, E: Identification of the knockout efficiency. F: Identification of protein 4.1R expression. G: 4.1R-/- HL-7702 cell line sequencing results. H: Comparison of 4.1R gene sequence. *P<0.05, ***P<0.001 vs HL-7702_WT.
Fig.2 Effect of knockout protein 4.1R on proliferation and apoptosis of HL-7702 cells. A: Results of CCK-8 experiments. B, C: Detection of cell proliferation by EdU method and flow cytometry. D, E: Detection of apoptosis by Annexin V-FITC/PI staining and flow cytometry. *P<0.05, **P<0.01, ***P<0.001 vs 4.1R+/+.
Fig.3 Effect of deletion of protein 4.1R on glycolysis in HL-7702 cells. A: Changes in cellular glucose uptake. B: Changes in extracellular lactate secretion. C: Changes in intracellular ATP levels. D: Changes in pH value of cell culture medium supernatants. E: Levels of mRNA expression of the key regulatory enzymes of glycolysis. F: Western blotting for detecting the downstream signaling pathway AMPK-mTORC1 (Raptor). *P<0.05, **P<0.01, ***P<0.001 vs 4.1R+/+.
1 | Trefts E, Gannon M, Wasserman DH. The liver[J]. Curr Biol, 2017, 27(21): R1147-51. |
2 | Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity[J]. Cell Mol Immunol, 2016, 13(3): 301-15. |
3 | Rui LY. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1): 177-97. |
4 | Ding HR, Wang JL, Ren HZ, et al. Lipometabolism and glycometabolism in liver diseases[J]. Biomed Res Int, 2018, 2018: 1287127. |
5 | Conboy J, Kan YW, Shohet SB, et al. Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton[J]. Proc Natl Acad Sci U S A, 1986, 83(24): 9512-6. |
6 | Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins[J]. Biochim Biophys Acta, 2014, 1838(2): 605-19. |
7 | Sun CX, Robb VA, Gutmann DH. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation[J]. J Cell Sci, 2002, 115(Pt 21): 3991-4000. |
8 | 李博文. 蛋白4.1R对白血病K562细胞功能的影响及机制研究[D]. 郑州: 郑州大学, 2021. |
9 | 桑思瑶. 蛋白4.1R对LPS诱导的小鼠脓毒症肝损伤的作用研究[D]. 郑州: 郑州大学, 2020. |
10 | Kubes P, Jenne C. Immune responses in the liver[J]. Annu Rev Immunol, 2018, 36: 247-77. |
11 | Adeva-Andany MM, Pérez-Felpete N, Fernández-Fernández C, et al. Liver glucose metabolism in humans[J]. Biosci Rep, 2016, 36(6): e00416. |
12 | An XL, Mohandas N. Disorders of red cell membrane[J]. Br J Haematol, 2008, 141(3): 367-75. |
13 | 唐治航. 蛋白4.1R对红系祖细胞增殖的影响及其在AML中的表达[D]. 郑州: 郑州大学, 2021. |
14 | Yuan JP, Xing HX, Li YK, et al. EPB41 suppresses the Wnt/β-catenin signaling in non-small cell lung cancer by sponging ALDOC[J]. Cancer Lett, 2021, 499: 255-64. |
15 | Yang XY, Yu DK, Ren YL, et al. Integrative functional genomics implicates EPB41 dysregulation in hepatocellular carcinoma risk[J]. Am J Hum Genet, 2016, 99(2): 275-86. |
16 | Kang QZ, Yu Y, Pei XH, et al. Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT[J]. Blood, 2009, 113(24): 6128-37. |
17 | Liang TT, Guo YY, Li MJ, et al. Cytoskeleton protein 4.1R regulates B-cell fate by modulating the canonical NF-κB pathway[J]. Immunology, 2020, 161(4): 314-24. |
18 | 梁桃桃. 蛋白4.1R对B细胞活化调控机制研究[D]. 郑州: 郑州大学, 2021. |
19 | Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?[J]. Annu Rev Biochem, 1998, 67: 821-55. |
20 | Kemp BE, Mitchelhill KI, Stapleton D, et al. Dealing with energy demand: the AMP-activated protein kinase[J]. Trends Biochem Sci, 1999, 24(1): 22-5. |
21 | Mulukutla BC, Yongky A, Le T, et al. Regulation of glucose metabolism-A perspective from cell bioprocessing[J]. Trends Biotechnol, 2016, 34(8): 638-51. |
22 | Zhang BB, Zhou GC, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metab, 2009, 9(5): 407-16. |
23 | Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-71. |
24 | Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. |
25 | Draberova L, Draberova H, Potuckova L, et al. Cytoskeletal protein 4.1R is a positive regulator of the FcεRI signaling and chemotaxis in mast cells[J]. Front Immunol, 2020, 10: 3068. |
26 | Park JS, Burckhardt CJ, Lazcano R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture[J]. Nature, 2020, 578(7796): 621-6. |
27 | Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis[J]. Cell Metab, 2021, 33(7): 1307-21. |
28 | Nunomura W, Takakuwa Y, Parra M, et al. Ca(2+)-dependent and Ca(2+)-independent calmodulin binding sites in erythrocyte protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins[J]. J Biol Chem, 2000, 275(9): 6360-7. |
29 | Nunomura W, Gascard P, Takakuwa Y. Insights into the function of the unstructured N-terminal domain of proteins 4.1R and 4.1G in erythropoiesis[J]. Int J Cell Biol, 2011, 2011: 943272. |
30 | Khan AA, Hanada T, Mohseni M, et al. Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1[J]. J Biol Chem, 2008, 283(21): 14600-9. |
31 | 丁 滪, 苏 旸, 姜维华, 等. 以带3蛋白为核心的红细胞膜蛋白复合体研究[C]. 第十次中国生物物理学术大会论文摘要集. 青岛, 2006: 108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||