Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (3): 661-668.doi: 10.12122/j.issn.1673-4254.2025.03.24
Liping FU1(), Lixia YUAN2(
), Jie WANG1, Xuelan CHEN1, Guizhi KE1, Yu HUANG1, Xinyi YANG1, Gang LIU1(
)
Received:
2024-11-19
Online:
2025-03-20
Published:
2025-03-28
Contact:
Gang LIU
E-mail:lipingfu2021@163.com;cnylxcm@163.com;lg2781@smu.edu
Supported by:
Liping FU, Lixia YUAN, Jie WANG, Xuelan CHEN, Guizhi KE, Yu HUANG, Xinyi YANG, Gang LIU. Advances of low-intensity pulsed ultrasound for treatment of musculoskeletal disorders in the past decade[J]. Journal of Southern Medical University, 2025, 45(3): 661-668.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.03.24
1 | Orbai AM, de Wit M, Mease P, et al. International patient and physician consensus on a psoriatic arthritis core outcome set for clinical trials[J]. Ann Rheum Dis, 2017, 76(4): 673-80. |
2 | Duarte-García A, Leung YY, Coates LC, et al. Endorsement of the 66/68 joint count for the measurement of musculoskeletal disease activity: OMERACT 2018 psoriatic arthritis workshop report[J]. J Rheumatol, 2019, 46(8): 996-1005. |
3 | Karmacharya P, Wright K, Achenbach SJ, et al. Diagnostic delay in psoriatic arthritis: a population-based study[J]. J Rheumatol, 2021, 48(9): 1410-6. |
4 | Holley AL, Wilson AC, Palermo TM. Predictors of the transition from acute to persistent musculoskeletal pain in children and adolescents: a prospective study[J]. Pain, 2017, 158(5): 794-801. |
5 | Allami M, Mousavi B, Masoumi M, et al. A comprehensive musculo-skeletal and peripheral nervous system assessment of war-related bilateral upper extremity amputees[J]. Mil Med Res, 2016, 3: 34. |
6 | Yang JW, Kang YH, Zhao WL, et al. Evaluation of patches for rotator cuff repair: a systematic review and meta-analysis based on animal studies[J]. Bioact Mater, 2022, 10: 474-91. |
7 | Bucher CH, Berkmann JC, Burkhardt LM, et al. Local immune cell contributions to fracture healing in aged individuals - A novel role for interleukin 22[J]. Exp Mol Med, 2022, 54(8): 1262-76. |
8 | Chen NJ, Fong DYT, Wong JYH. Trends in musculoskeletal rehabilitation needs in China from 1990 to 2030: a Bayesian age-period-cohort modeling study[J]. Front Public Health, 2022, 10: 869239. |
9 | Cruz-Almeida Y, Rosso A, Marcum Z, et al. Associations of musculoskeletal pain with mobility in older adults: potential cerebral mechanisms[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(9): 1270-6. |
10 | Steinhausen HC, Villumsen MD, Hørder K, et al. Increased risk of somatic diseases following anorexia nervosa in a controlled nationwide cohort study[J]. Int J Eat Disord, 2022, 55(6): 754-62. |
11 | Assis LD, de Paula JJ, Assis MG, et al. Psychometric properties of the Brazilian version of pfeffer’s functional activities questionnaire[J]. Front Aging Neurosci, 2014, 6: 255. |
12 | Klijs B, Nusselder WJ, Looman CW, et al. Educational disparities in the burden of disability: contributions of disease prevalence and disabling impact[J]. Am J Public Health, 2014, 104(8): e141-8. |
13 | Zheng ZG, Johansson H, Harvey NC, et al. Potential adverse effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on bisphosphonate efficacy: an exploratory post hoc analysis from a randomized controlled trial of clodronate[J]. J Bone Miner Res, 2022, 37(6): 1117-24. |
14 | Majuta LA, Mitchell SAT, Kuskowski MA, et al. Anti-nerve growth factor does not change physical activity in normal young or aging mice but does increase activity in mice with skeletal pain[J]. Pain, 2018, 159(11): 2285-95. |
15 | Qureshi S, Ali G, Idrees M, et al. Selected thiadiazine-Thione derivatives attenuate neuroinflammation in chronic constriction injury induced neuropathy[J]. Front Mol Neurosci, 2021, 14: 728128. |
16 | Meade LB, Bearne LM, Sweeney LH, et al. Behaviour change techniques associated with adherence to prescribed exercise in patients with persistent musculoskeletal pain: Systematic review[J]. Br J Health Psychol, 2019, 24(1): 10-30. |
17 | Sun E, Moshfegh J, Rishel CA, et al. Association of early physical therapy with long-term opioid use among opioid-naive patients with musculoskeletal pain[J]. JAMA Netw Open, 2018, 1(8): e185909. |
18 | Yang XB, Li P, Lei JY, et al. Integrated application of low-intensity pulsed ultrasound in diagnosis and treatment of atrophied skeletal muscle induced in tail-suspended rats[J]. Int J Mol Sci, 2022, 23(18): 10369. |
19 | Yang T, Liang C, Chen L, et al. Low-intensity pulsed ultrasound alleviates hypoxia-induced chondrocyte damage in temporo-mandibular disorders by modulating the hypoxia-inducible factor pathway[J]. Front Pharmacol, 2020, 11: 689. |
20 | Wang JW, Lai B, Nanayakkara G, et al. Experimental data-mining analyses reveal new roles of low-intensity ultrasound in differentiating cell death regulatome in cancer and non-cancer cells via potential modulation of chromatin long-range interactions[J]. Front Oncol, 2019, 9: 600. |
21 | Yao H, Zhang L, Yan SJ, et al. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7[J]. J Nanobiotechnology, 2022, 20(1): 378. |
22 | Wang YJ, Li J, Qiu Y, et al. Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression[J]. Int J Mol Med, 2018, 42(1): 322-30. |
23 | Egge N, Arneaud SLB, Fonseca RS, et al. Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress[J]. Nat Commun, 2021, 12(1): 1484. |
24 | Jiang XX, Savchenko O, Li YF, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-18. |
25 | Sato M, Kuroda S, Mansjur KQ, et al. Low-intensity pulsed ultrasound rescues insufficient salivary secretion in autoimmune sialadenitis[J]. Arthritis Res Ther, 2015, 17: 278. |
26 | Inoue S, Li CX, Hatakeyama J, et al. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1[J]. Bone, 2023, 177: 116916. |
27 | Jiang WH, Jin YY, Zhang SW, et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis[J]. Bone Res, 2022, 10(1): 27. |
28 | Mori S, Matsukawa S, Kawase M, et al. Induced electric potential in cortical bone and cartilage by ultrasound irradiation[J]. J Acoust Soc Am, 2016, 140(): 3189. |
29 | Sun LJ, An SS, Zhang ZH, et al. Molecular and metabolic mechanism of low-intensity pulsed ultrasound improving muscle atrophy in hindlimb unloading rats[J]. Int J Mol Sci, 2021, 22(22): 12112. |
30 | Wang Y, Xiao QY, Zhong WJ, et al. Low-intensity pulsed ultrasound promotes periodontal regeneration in a beagle model of furcation involvement[J]. Front Bioeng Biotechnol, 2022, 10: 961898. |
31 | Shimizu T, Fujita N, Tsuji-Tamura K, et al. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing[J]. Sci Rep, 2021, 11(1): 10298. |
32 | Buarque de Gusmão CV, Batista NA, Vidotto Lemes VT, et al. Effect of low-intensity pulsed ultrasound stimulation, extracorporeal shockwaves and radial pressure waves on Akt, BMP-2, ERK-2, FAK and TGF-β1 during bone healing in rat tibial defects[J]. Ultrasound Med Biol, 2019, 45(8): 2140-61. |
33 | Chan YS, Hsu KY, Kuo CH, et al. Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study[J]. Ultrasound Med Biol, 2010, 36(5): 743-51. |
34 | Abudupataer M, Zou WH, Zhang WW, et al. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation[J]. J Cell Mol Med, 2019, 23(12): 8392-409. |
35 | Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways[J]. J Cell Mol Med, 2019, 23(3): 1963-75. |
36 | Chen YZ, Luo XQ, Liu Y, et al. Targeted nanobubbles of PD-L1 MAb combined with doxorubicin as a synergistic tumor repressor in hepatocarcinoma[J]. Int J Nanomedicine, 2022, 17: 3989-4008. |
37 | Duan HM, Chen SJ, Mai XD, et al. Low-intensity pulsed ultrasound (LIPUS) promotes skeletal muscle regeneration by regulating PGC-1α/AMPK/GLUT4 pathways in satellite cells/myoblasts[J]. Cell Signal, 2024, 117: 111097. |
38 | Wang J, Tan JY, Qi Q, et al. miR-487b-3p suppresses the proliferation and differentiation of myoblasts by targeting IRS1 in skeletal muscle myogenesis[J]. Int J Biol Sci, 2018, 14(7): 760-74. |
39 | Lin ZJ, Shen DN, Zhou WX, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration[J]. Bioact Mater, 2021, 6(8): 2315-30. |
40 | Atherton P, Lausecker F, Harrison A, et al. Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity[J]. J Cell Sci, 2017, 130(14): 2277-91. |
41 | Cao H, Fu YF, Zhang ZZ, et al. Unbiased transcriptome mapping and modeling identify candidate genes and compounds of osteoarthritis[J]. Front Pharmacol, 2022, 13: 888533. |
42 | Liao Q, Li BJ, Li Y, et al. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF‑κB signaling pathway[J]. Int Immuno-pharmacol, 2021, 97: 107824. |
43 | Uddin SZ, Richbourgh B, Ding Y, et al. Chondro-protective effects of low intensity pulsed ultrasound[J]. Osteoarthritis Cartilage, 2016, 24(11): 1989-98. |
44 | Bian TY, Meng W, Qiu MH, et al. Noninvasive ultrasound stimulation of ventral tegmental area induces reanimation from general anaesthesia in mice[J]. Research, 2021, 2021: 2674692. |
45 | Kamatsuki Y, Aoyama E, Furumatsu T, et al. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured Meniscus [J]. J Cell Commun Signal, 2019, 13(2): 193-207. |
46 | Zhang B, Chen HG, Ouyang JJ, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect[J]. Autophagy, 2020, 16(7): 1262-78. |
47 | Jingushi S, Mizuno K, Matsushita T, et al. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures[J]. J Orthop Sci, 2007, 12(1): 35-41. |
48 | Urita A, Iwasaki N, Kondo M, et al. Effect of low-intensity pulsed ultrasound on bone healing at osteotomy sites after forearm bone shortening[J]. J Hand Surg Am, 2013, 38(3): 498-503. |
49 | Schofer MD, Block JE, Aigner J, et al. Improved healing response in delayed unions of the Tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial[J]. BMC Musculo-skelet Disord, 2010, 11: 229. |
50 | Leighton R, Tracy Watson J, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis[J]. Injury, 2017, 48(7): 1339-47. |
51 | Poolman RW, Agoritsas T, Siemieniuk RAC, et al. Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline[J]. BMJ, 2017, 356: j576. |
52 | Fleckenstein J, Friton M, Himmelreich H, et al. Effect of a single administration of focused extracorporeal shock wave in the relief of delayed-onset muscle soreness: results of a partially blinded randomized controlled trial[J]. Arch Phys Med Rehabil, 2017, 98(5): 923-30. |
53 | Santamato A, Panza F, Notarnicola A, et al. Is extracorporeal shockwave therapy combined with isokinetic exercise more effective than extracorporeal shockwave therapy alone for subacromial impingement syndrome? A randomized clinical trial[J]. J Orthop Sports Phys Ther, 2016, 46(9): 714-25. |
54 | Miao SD, Nowicki M, Cui HT, et al. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy[J]. Biofabrication, 2019, 11(3): 035030. |
55 | Zhao HB, Liang T, Tang YJ, et al. Single-cell transcriptomics analysis of the pathogenesis of tendon injury[J]. Oxid Med Cell Longev, 2022, 2022: 7887782. |
56 | Chen K, Zhang XZ, Li Z, et al. Excessive sulfur oxidation in endoplasmic reticulum drives an inflammatory reaction of chondro-cytes in aging mice[J]. Front Pharmacol, 2022, 13: 1058469. |
57 | Jia L, Wang Y, Chen JY, et al. Efficacy of focused low-intensity pulsed ultrasound therapy for the management of knee osteoarthritis: a randomized, double blind, placebo-controlled trial[J]. Sci Rep, 2016, 6: 35453. |
58 | Paolillo FR, Paolillo AR, João JP, et al. Ultrasound plus low-level laser therapy for knee osteoarthritis rehabilitation: a randomized, placebo-controlled trial[J]. Rheumatol Int, 2018, 38(5): 785-93. |
59 | Kim ED, Won YH, Park SH, et al. Efficacy and safety of a stimulator using low-intensity pulsed ultrasound combined with transcutaneous electrical nerve stimulation in patients with painful knee osteoarthritis[J]. Pain Res Manag, 2019, 2019: 7964897. |
60 | Neogi T, Hunter DJ, Churchill M, et al. Observed efficacy and clinically important improvements in participants with osteoarthritis treated with subcutaneous tanezumab: results from a 56-week randomized NSAID-controlled study[J]. Arthritis Res Ther, 2022, 24(1): 78. |
61 | Jones SE, Campbell PK, Kimp AJ, et al. Evaluation of a novel e-learning program for physiotherapists to manage knee osteoarthritis via telehealth: qualitative study nested in the PEAK (physiotherapy exercise and physical activity for knee osteoarthritis) randomized controlled trial[J]. J Med Internet Res, 2021, 23(4): e25872. |
62 | Xiang X, Liu H, Wang LY, et al. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model[J]. J Cell Mol Med, 2020, 24(18): 10816-29. |
63 | Mierzwa D, Szadzińska J, Gapiński B, et al. Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries' quality[J]. Ultrason Sonochem, 2022, 89: 106117. |
64 | Brink HW, Loomans MGLC, Mobach MP, et al. Classrooms' indoor environmental conditions affecting the academic achievement of students and teachers in higher education: a systematic literature review[J]. Indoor Air, 2021, 31(2): 405-25. |
65 | Wong AW, Fite BZ, Liu Y, et al. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models[J]. J Clin Invest, 2016, 126(1): 99-111. |
66 | Yue Y, Yang XM, Zhang L, et al. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells[J]. Cell Prolif, 2016, 49(6): 720-8. |
67 | Li CH, Xiao CR, Zhan LZ, et al. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization[J]. Bioact Mater, 2022, 18: 399-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||