Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (11): 2074-2081.doi: 10.12122/j.issn.1673-4254.2024.11.03
Changlong FU1,2(), Yanming LIN1,2, Shujie LAN1,2, Yue CHEN3, Chao LI1,2, Shiyu LU1,2, Qing LIN3(
)
Received:
2024-07-23
Online:
2024-11-20
Published:
2024-11-29
Contact:
Qing LIN
E-mail:993001232@qq.com;707425971@qq.com
Supported by:
Changlong FU, Yanming LIN, Shujie LAN, Yue CHEN, Chao LI, Shiyu LU, Qing LIN. Tougu Xiaotong Capsule alleviates cartilage degeneration in mice with knee osteoarthritis by modulating Nav1.7[J]. Journal of Southern Medical University, 2024, 44(11): 2074-2081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.11.03
Fig.2 Nav1.7, MMP-3, ADAMTS-5, and COX-2 protein expressions in the cartilage tissue in different groups. A-E: Western blotting and quantitative data of Nav1.7, MMP-3, ADAMTS-5, and COX-2 expressions in each group (n=3). *P<0.05 vs Sham group, #P<0.05 vs Model group.
Fig.4 Fluorescence in situ hybridization reveals Nav1.7 expression in the cytoplasm of the chondrocytes (×100). *P<0.05 vs Sham group; #P<0.05 vs IL-1β group.
Fig.5 MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, and COX-2 proteins expressions in the chondrocytes with TGXTC treatment and lentivirus-mediated Nav1.7 knockdown. A-F: Western blotting and quantitative data of MMP-3, MMP-13, ADAMTS-4, ADAMTS-5 and COX-2 expressions in each group (n=3). *P<0.05 vs Sham group; #P<0.05 vs IL-1β group; &P<0.05 vs IL-1β+sh-Nav1.7 group; △P<0.05 vs IL-1β+TGXTC group.
1 | Diamond LE, Grant T, Uhlrich SD. Osteoarthritis year in review 2023: Biomechanics[J]. Osteoarthritis Cartilage, 2024, 32(2): 138-47. |
2 | Gelber AC. Knee osteoarthritis[J]. Ann Intern Med, 2024, 177(9): ITC129-44. |
3 | Liew JW, King LK, Mahmoudian A, et al. A scoping review of how early-stage knee osteoarthritis has been defined[J]. Osteoarthritis Cartilage, 2023, 31(9): 1234-41. |
4 | Li XH, Zhang ZL, Liang WN, et al. Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: in vivo and in vitro verification[J]. J Ethnopharmacol, 2020, 249: 112390. |
5 | Li X, Zhang Z, Liang W, et al. Data on Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation in vitro [J]. Data Brief, 2019, 28: 105023. |
6 | Liao JH, Yu XB, Chen JQ, et al. Knowledge mapping of autophagy in osteoarthritis from 2004 to 2022: a bibliometric analysis[J]. Front Immunol, 2023, 14: 1063018. |
7 | Alles SRA, Smith PA. Peripheral voltage-gated cation channels in neuropathic pain and their potential as therapeutic targets[J]. Front Pain Res, 2021, 2: 750583. |
8 | Deng L, Dourado M, Reese RM, et al. Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids [J]. Neuron, 2023, 111(17): 2642-59. |
9 | Loya-López SI, Duran P, Ran DZ, et al. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose Ganglia neurons[J]. Neurobiol Pain, 2022, 12: 100109. |
10 | Xue YP, Chidiac C, Herault Y, et al. Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models[J]. Neurosci Lett, 2021, 753: 135844. |
11 | Jami S, Deuis JR, Klasfauseweh T, et al. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function[J]. Nat Commun, 2023, 14(1): 2442. |
12 | Sun LT, Xia RL, Jiang JW, et al. MicroRNA-96 is required to prevent allodynia by repressing voltage-gated sodium channels in spinal cord[J]. Prog Neurobiol, 2021, 202: 102024. |
13 | Fu WY, Vasylyev D, Bi YF, et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis[J]. Nature, 2024, 625(7995): 557-65. |
14 | Hidaka K, Maruta T, Koshida T, et al. Extracellular signal-regulated kinase phosphorylation enhancement and NaV1.7 sodium channel upregulation in rat dorsal root Ganglia neurons contribute to resiniferatoxin-induced neuropathic pain: the efficacy and mechanism of pulsed radiofrequency therapy[J]. Mol Pain, 2022, 18: 17448069221089784. |
15 | Kamei T, Kudo T, Yamane H, et al. Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230[J]. Biochem Biophys Res Commun, 2024, 721: 150126. |
16 | Yin JB, Liu HX, Dong QQ, et al. Correlative increasing expressions of KIF5b and Nav1.7 in DRG neurons of rats under neuropathic pain conditions[J]. Physiol Behav, 2023, 263: 114115. |
17 | 朱海波, 何忠斌. 透骨消痛胶囊治疗骨质疏松性骨关节炎的临床疗效[J]. 内蒙古中医药, 2019, 38(8): 25-6. |
18 | Shi XQ, Jie LS, Wu P, et al. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways[J]. J Ethnopharmacol, 2022, 297: 115536. |
19 | Liu DR, Mei W, Kang JF, et al. Casticin ameliorates osteoarthritic cartilage damage in rats through PI3K/AKT/HIF-1α signaling[J]. Chem Biol Interact, 2024, 391: 110897. |
20 | 李孝栋, 张丽红, 肖晓金, 等. 透骨消痛胶囊质量标准的研究[J]. 福建中医药, 2012, 43(1): 57-9. |
21 | 廖乃顺, 陈文列, 郑良朴, 等. 透骨消痛胶囊的急性毒性实验[J]. 福建中医药大学学报, 2012, 22(2): 54-7. |
22 | 肖晓金, 包侠萍, 张丽红, 等. 透骨消痛胶囊在大鼠体内药代动力学初步研究[J]. 福建中医药大学学报, 2014, 24(2): 35-7, 42. |
23 | Li XH, Wu MX, Ye HZ, et al. Experimental study on the suppression of sodium nitroprussiate-induced chondrocyte apoptosis by Tougu Xiaotong Capsule[J]. Chin J Integr Med, 2011, 17(6): 436-43. |
24 | Sethi V, Qin L, Trocóniz IF, et al. Model-based assessment of the liver safety profile of acetaminophen to support its combination use with topical diclofenac in mild-to-moderate osteoarthritis pain[J]. Pain Ther, 2024, 13(1): 127-43. |
25 | Li TT, Guo MB, Zhang WL. Comparison of therapeutic effects of topical application of diclofenac sodium nanoparticles and conventional placebo on knee osteoarthritis[J]. Cell Mol Biol, 2022, 68(3): 171-8. |
26 | Ma YT, Dong YL, Wang B, et al. Dry needling on latent and active myofascial trigger points versus oral diclofenac in patients with knee osteoarthritis: a randomized controlled trial[J]. BMC Musculoskelet Disord, 2023, 24(1): 36. |
27 | Fu CL, Lin YM, Tu HS, et al. Mechanism of Tougu Xiaotong Capsules in delaying degeneration of osteoarthritis by regulating cholesterol metabolism in chondrocytes through lncRNA MALAT1[J]. China J Chin Mater Med, 2024, 49(7): 1785-92. |
28 | Wu GW, Zhang JH, Chen WL, et al. Tougu Xiaotong capsule exerts a therapeutic effect on knee osteoarthritis by regulating subchondral bone remodeling[J]. Mol Med Rep, 2019, 19(3): 1858-66. |
29 | Wu GW, Huang YM, Chen WL, et al. Tougu Xiaotong capsule exerts a therapeutic effect by improving knee meniscus in the early osteoarthritis rat model[J]. Exp Ther Med, 2020, 19(6): 3641-9. |
30 | Liang WN, Li XH, Hu L, et al. An in vitro validation of the therapeutic effects of Tougu Xiaotong capsule on tunicamycin-treated chondrocytes[J]. J Ethnopharmacol, 2019, 229: 215-21. |
31 | Hu QC, Williams SL, Palladino A, et al. Screening of MMP-13 inhibitors using a GelMA-alginate interpenetrating network hydrogel-based model mimicking cytokine-induced key features of osteoarthritis in vitro [J]. Polymers, 2024, 16(11): 1572. |
32 | Zhao QH, Lin LP, Guo YX, et al. Matrix metalloproteinase-13, NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis[J]. Exp Ther Med, 2020, 19(6): 3620-6. |
33 | Kumar P, Kumar S, Abhilasha A, et al. The role of matrix metalloproteinase 13 and vitamin D in osteoarthritis: a hospital-based observational study[J]. Cureus, 2023, 15(9): e45437. |
34 | Wang ZY, Shi WM, Wu LH, et al. TMF inhibits extracellular matrix degradation by regulating the C/EBPβ/ADAMTS5 signaling pathway in osteoarthritis[J]. Biomed Pharmacother, 2024, 174: 116501. |
35 | Wang Z, Efferth T, Hua X, et al. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: a systematic review[J]. Phytomedicine, 2022, 105: 154347. |
36 | Weng KD, Luo MJ, Dong DH. Elucidation of the mechanism by which a ADAMTS5 gene microRNA-binding site single nucleotide polymorphism affects the risk of osteoarthritis[J]. Genet Test Mol Biomarkers, 2020, 24(8): 467-77. |
37 | Chiang YF, Huang KC, Wang K, et al. Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection[J]. Mar Drugs, 2024, 22(5): 211. |
38 | Yu M, Park C, Son YB, et al. Time-dependent effect of eggshell membrane on monosodium-iodoacetate-induced osteoarthritis: early-stage inflammation control and late-stage cartilage protection[J]. Nutrients, 2024, 16(12): 1885. |
39 | Wang YH, Zhu LL, Li TL, et al. Imrecoxib: advances in pharmacology and therapeutics[J]. Drug Des Devel Ther, 2024, 18: 1711-25. |
40 | Hestehave S, Allen HN, Gomez K, et al. Small molecule targeting NaV1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model[J]. Pain, 2024. doi: 10.1097/j.pain.0000000000003357 . |
41 | Rahman W, Dickenson AH. Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: an in vivo electrophysiological study in the rat[J]. Neuroscience, 2015, 295: 103-16. |
[1] | MEI Wei, HONG Bowen, HUANG Guicheng. Mechanism of high expression of high mobility group protein 1 in a rat model of knee osteoarthritis [J]. Journal of Southern Medical University, 2021, 41(8): 1142-1149. |
[2] | . Shaoyangzhugu Formula regulates p19Arf-p53-p21Cip1 signaling pathway to ameliorate cartilage degeneration in aged cynomolgus monkeys with knee osteoarthritis [J]. Journal of Southern Medical University, 2018, 38(03): 346-. |
[3] | . Effect of eletroacupuncture with close-to-bone needling treatment on expression of Sox9, VEGF and ColX in impaired cartilage of rabbits with knee osteoarthritis [J]. Journal of Southern Medical University, 2016, 36(07): 997-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||