1 |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48.
|
2 |
Chen PX, Liu YH, Wen YK, et al. Non-small cell lung cancer in China[J]. Cancer Commun, 2022, 42(10): 937-70.
|
3 |
Bian X, Liu R, Meng Y, et al. Lipid metabolism and cancer[J]. J Exp Med, 2021, 218(1).
|
4 |
Yin Y, He MQ, Huang YJ, et al. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma[J]. BMC Immunol, 2023, 24(1): 37.
|
5 |
Quispe C, Herrera-Bravo J, Javed Z, et al. Therapeutic applications of curcumin in diabetes: a review and perspective[J]. Biomed Res Int, 2022, 2022: 1375892.
|
6 |
Li XS, Zhu RG, Jiang H, et al. Autophagy enhanced by curcumin ameliorates inflammation in atherogenesis via the TFEB-P300-BRD4 axis[J]. Acta Pharm Sin B, 2022, 12(5): 2280-99.
|
7 |
Tang CY, Liu JT, Yang CS, et al. Curcumin and its analogs in non-small cell lung cancer treatment: challenges and expectations[J]. Biomolecules, 2022, 12(11): 1636.
|
8 |
Ming TQ, Tao Q, Tang S, et al. Curcumin: an epigenetic regulator and its application in cancer[J]. Biomed Pharmacother, 2022, 156: 113956.
|
9 |
Ashrafizadeh M, Najafi M, Makvandi P, et al. Versatile role of curcumin and its derivatives in lung cancer therapy[J]. J Cell Physiol, 2020, 235(12): 9241-68.
|
10 |
Shan DD, Wang JM, Di QN, et al. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin[J]. Food Funct, 2022, 13(1): 327-43.
|
11 |
Wu SF, Kong XF, Sun Y, et al. FABP3 overexpression promotes vascular fibrosis in Takayasu's arteritis by enhancing fatty acid oxidation in aorta adventitial fibroblasts[J]. Rheumatology, 2022, 61(7): 3071-81.
|
12 |
Li RQ, Li XQ, Zhao J, et al. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation[J]. Theranostics, 2022, 12(2): 976-98.
|
13 |
Nosrati-Oskouie M, Aghili-Moghaddam NS, Sathyapalan T, et al. Impact of curcumin on fatty acid metabolism[J]. Phytother Res, 2021, 35(9): 4748-62.
|
14 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49.
|
15 |
Li MJ, Guo TT, Lin JY, et al. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway[J]. J Ethnopharmacol, 2022, 283: 114689.
|
16 |
Liu CF, Rokavec M, Huang ZK, et al. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis[J]. Cell Death Differ, 2023, 30(7): 1771-85.
|
17 |
Li JT, Wei HL, Liu YG, et al. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis[J]. Evid Based Complement Alternat Med, 2020, 2020: 2892917.
|
18 |
Bahrami A, Ferns GA. Effect of curcumin and its derivates on gastric cancer: molecular mechanisms[J]. Nutr Cancer, 2021, 73(9): 1553-69.
|
19 |
Guariglia M, Saba F, Rosso C, et al. Molecular mechanisms of curcumin in the pathogenesis of metabolic dysfunction associated steatotic liver disease[J]. Nutrients, 2023, 15(24): 5053.
|
20 |
Lee SC, Jee SC, Kim M, et al. Curcumin suppresses the lipid accumulation and oxidative stress induced by benzo [a] Pyrene toxicity in HepG2 cells[J]. Antioxidants, 2021, 10(8): 1314.
|
21 |
Ceja-Galicia ZA, García-Arroyo FE, Aparicio-Trejo OE, et al. Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: association with the improvement of renal mitochondrial β‑oxidation and lipid metabolism in kidney and liver[J]. Antioxidants, 2022, 11(11): 2195.
|
22 |
Sun T, Chen JG, Yang F, et al. Lipidomics reveals new lipid-based lung adenocarcinoma early diagnosis model[J]. EMBO Mol Med, 2024, 16(4): 854-69.
|
23 |
Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechan-isms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046.
|
24 |
Eltayeb K, Monica SL, Tiseo M, et al. Reprogramming of lipid metabolism in lung cancer: an overview with focus on EGFR-mutated non-small cell lung cancer[J]. Cells, 2022, 11(3): 413.
|
25 |
Ni HY, Yu L, Zhao XL, et al. Seed oil of Rosa roxburghii Tratt against non-alcoholic fatty liver disease in vivo and in vitro through PPARα/PGC-1α-mediated mitochondrial oxidative metabolism[J]. Phytomedicine, 2022, 98: 153919.
|
26 |
Zhou S, Ling X, Liang Y, et al. Cannabinoid receptor 2 plays a key role in renal fibrosis through inhibiting lipid metabolism in renal tubular cells[J]. Metabolism, 2024, 159: 155978.
|
27 |
Li DD, Ma JM, Li MJ, et al. Supplementation of Lycium barbarum polysaccharide combined with aerobic exercise ameliorates high-fat-induced nonalcoholic steatohepatitis via AMPK/PPARα/PGC-1α pathway[J]. Nutrients, 2022, 14(15): 3247.
|
28 |
Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22(11): 5703.
|
29 |
Luo F, Lu FT, Cao JX, et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer[J]. Cancer Lett, 2022, 531: 39-56.
|
30 |
Wu H, Zhao XF, Hochrein SM, et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α‑mediated glycolytic reprogramming[J]. Nat Commun, 2023, 14(1): 6858.
|
31 |
Kierans SJ, Fagundes RR, Malkov MI, et al. Hypoxia induces a glycolytic complex in intestinal epithelial cells independent of HIF-1-driven glycolytic gene expression[J]. Proc Natl Acad Sci USA, 2023, 120(35): e2208117120.
|
32 |
Mylonis I, Simos G, Paraskeva E. Hypoxia-inducible factors and the regulation of lipid metabolism[J]. Cells, 2019, 8(3): 214.
|
33 |
Chen Y, Xu X, Wang YR, et al. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation[J]. J Exp Clin Cancer Res, 2023, 42(1): 265.
|
34 |
Huang CY, Yong QH, Lu YH, et al. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1[J]. Front Pharmacol, 2024, 15: 1335814.
|
35 |
Li YY, Lu Y, Lin SH, et al. Insulin signaling establishes a developmental trajectory of adipose regulatory T cells[J]. Nat Immunol, 2021, 22(9): 1175-85.
|