1 |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63.
|
2 |
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-85.
|
3 |
Sharma V, Kumar A. Microsatellite-instability-high metastatic colorectal cancer[J]. N Engl J Med, 2025, 392(7): 726.
|
4 |
Ciardiello F, Ciardiello D, Martini G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA Cancer J Clin, 2022, 72(4): 372-401.
|
5 |
Eves BJ, Gebregiworgis T, Gasmi-Seabrook GMC, et al. Structures of RGL1 RAS-association domain in complex with KRAS and the oncogenic G12V mutant[J]. J Mol Biol, 2022, 434(9): 167527.
|
6 |
Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform[J]. Nat Rev Cancer, 2008, 8(2): 133-40.
|
7 |
Yan C, Liu D, Li L, et al. Discovery and characterization of small molecules that target the GTPase Ral[J]. Nature, 2014, 515(7527): 443-7.
|
8 |
Smith SC, Theodorescu D. The Ral GTPase pathway in metastatic bladder cancer: key mediator and therapeutic target[J]. Urol Oncol, 2009, 27(1): 42-7.
|
9 |
Smith SC, Baras AS, Owens CR, et al. Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic charac-teristics in human cancer[J]. Cancer Res, 2012, 72(14): 3480-91.
|
10 |
Zago G, Veith I, Singh MK, et al. RalB directly triggers invasion downstream Ras by mobilizing the Wave complex[J]. eLife, 2018, 7: e40474.
|
11 |
das Chagas PF, de Sousa GR, Veronez LC, et al. Identification ofITPR1as a hub gene of group 3 medulloblastoma and coregulated genes with potential prognostic values[J]. J Mol Neurosci, 2022, 72(3): 633-41.
|
12 |
Jansen S, Gosens R, Wieland T, et al. Paving the rho in cancer metastasis: rho GTPases and beyond[J]. Pharmacol Ther, 2018, 183: 1-21.
|
13 |
Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008, 9(9): 690-701.
|
14 |
Ridley AJ. Rho GTPase signalling in cell migration[J]. Curr Opin Cell Biol, 2015, 36: 103-12.
|
15 |
Maldonado MDM, Dharmawardhane S. Targeting rac and Cdc42 GTPases in cancer[J]. Cancer Res, 2018, 78(12): 3101-11.
|
16 |
Guilluy C, Dubash AD, García-Mata R. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus[J]. Nat Protoc, 2011, 6(12): 2050-60.
|
17 |
Kirkby NS, Lundberg MH, Wright WR, et al. COX-2 protects against atherosclerosis independently of local vascular prostacyclin: identification of COX-2 associated pathways implicate Rgl1 and lymphocyte networks[J]. PLoS One, 2014, 9(6): e98165.
|
18 |
Guo G, Shi X, Wang H, et al. Epitranscriptomic N4-acetylcytidine profiling in CD4+ T cells of systemic lupus erythematosus[J]. Front Cell Dev Biol, 2020, 8: 842.
|
19 |
Park J, Kim DY, Gee HY, et al. Genome-wide association study to identify genetic factors linked to HBV reactivation following liver transplantation in HBV-infected patients[J]. Int J Mol Sci, 2024, 26(1): 259.
|
20 |
Vigil D, Martin TD, Williams F, et al. Aberrant overexpression of the Rgl2 ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through ral-dependent and ral-independent mechanisms[J]. J Biol Chem, 2010, 285(45): 34729-40.
|
21 |
Santos AO, Parrini MC, Camonis J. RalGPS2 is essential for survival and cell cycle progression of lung cancer cells independently of its established substrates ral GTPases[J]. PLoS One, 2016, 11(5): e0154840.
|
22 |
Zhou H, Liu Z, Wang Y, et al. Colorectal liver metastasis: molecular mechanism and interventional therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 70.
|
23 |
Zhang X, Ren L, Wu J, et al. ARHGEF37 overexpression promotes extravasation and metastasis of hepatocellular carcinoma via dir-ectly activating Cdc42[J]. J Exp Clin Cancer Res, 2022, 41(1): 230.
|
24 |
Guo X, Mu B, Zhu L, et al. Rabenosyn-5 suppresses non-small cell lung cancer metastasis via inhibiting CDC42 activity[J]. Cancer Gene Ther, 2024, 31(10): 1465-76.
|
25 |
Zhang J, Guo F, Li C, et al. Loss of TTC17 promotes breast cancer metastasis through RAP1/CDC42 signaling and sensitizes it to rapamycin and paclitaxel[J]. Cell Biosci, 2023, 13(1): 50.
|
26 |
Makrodouli E, Oikonomou E, Koc M, et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study[J]. Mol Cancer, 2011, 10: 118.
|
27 |
Glogowska A, Thanasupawat T, Beiko J, et al. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells[J]. Mol Oncol, 2022, 16(2): 368-87.
|
28 |
An S, Vo TTL, Son T, et al. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion[J]. Exp Mol Med, 2023, 55(4): 779-93.
|
29 |
Wu WJ, Tu S, Cerione RA. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation[J]. Cell, 2003, 114(6): 715-25.
|
30 |
Xu XP, He HL, Hu SL, et al. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro [J]. Stem Cell Res Ther, 2017, 8(1): 164.
|
31 |
Clark-Cotton MR, Jacobs KC, Lew DJ. Chemotropism and cell-cell fusion in fungi[J]. Microbiol Mol Biol Rev, 2022, 86(1): e0016521.
|
32 |
Rutkowski DM, Vincenzetti V, Vavylonis D, et al. Cdc42 mobility and membrane flows regulate fission yeast cell shape and survival[J]. Nat Commun, 2024, 15(1): 8363.
|
33 |
Pelish HE, Peterson JR, Salvarezza SB, et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro [J]. Nat Chem Biol, 2006, 2(1): 39-46.
|
34 |
Murai H, Ikeda M, Kishida S, et al. Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral[J]. J Biol Chem, 1997, 272(16): 10483-90.
|