南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (12): 2367-2374.doi: 10.12122/j.issn.1673-4254.2024.12.12
• • 上一篇
收稿日期:
2024-07-19
出版日期:
2024-12-20
发布日期:
2024-12-26
通讯作者:
王允
E-mail:3395103897@qq.com;wy_sunnyday@126.com
作者简介:
李 欢,硕士,E-mail: 3395103897@qq.com
基金资助:
Huan LI(), Zixin QIU, Wenjie XU, Xue CHEN, Diandian WEI, Yun WANG(
)
Received:
2024-07-19
Online:
2024-12-20
Published:
2024-12-26
Contact:
Yun WANG
E-mail:3395103897@qq.com;wy_sunnyday@126.com
摘要:
目的 探究木犀草素(Lut)对肺癌A549细胞增殖的抑制作用及其内在机制。 方法 用不同浓度的Lut处理A549细胞48 h,通过MTT法检测细胞活性,通过平板克隆和EdU染色检测细胞增殖,通过DCFH-DA法检测细胞活性氧(ROS)水平,通过Hoechst33258 染色法检测细胞凋亡水平,通过MDC染色法检测细胞自噬水平,通过Western blotting实验检测细胞凋亡相关蛋白Bax、Bcl-2、Cleaved caspase-9,自噬相关蛋白LC3B、Beclin1、P62,AKT/mTOR通路蛋白以及HO-1蛋白的表达。 结果 Lut剂量依赖性的抑制A549细胞的活力和增殖能力(P<0.05),引发细胞内ROS水平增加(P<0.05),上调凋亡相关蛋白Bax、Cleaved caspase-9和自噬相关蛋白Beclin1的表达,增加LC3B-II/LC3B-I的比值,下调抗凋亡蛋白Bcl-2和自噬相关蛋白P62的表达,诱导细胞凋亡和自噬(P<0.001)。此外,Lut可显著抑制AKT和mTOR的磷酸化,下调HO-1蛋白的表达(P<0.05)。 结论 Lut通过增加细胞内ROS的产生,抑制AKT/mTOR通路以及下调HO-1蛋白水平诱导A549细胞的凋亡和自噬。
李欢, 邱紫欣, 徐文洁, 陈雪, 魏典典, 王允. 木犀草素通过增加ROS的产生和下调AKT/mTOR通路及HO-1蛋白表达抑制肺癌A549细胞增殖[J]. 南方医科大学学报, 2024, 44(12): 2367-2374.
Huan LI, Zixin QIU, Wenjie XU, Xue CHEN, Diandian WEI, Yun WANG. Luteolin inhibits proliferation of lung cancer A549 cells by increasing ROS production and inhibiting the AKT/mTOR signaling pathway and HO-1 expression[J]. Journal of Southern Medical University, 2024, 44(12): 2367-2374.
图1 Lut抑制A549细胞的活力、增殖和克隆形成能力
Fig.1 Luteolin (Lut) inhibits viability, proliferation, and clone-forming ability of A549 cells. A: MTT assay of A549 cells treated with different concentrations of luteolin for 48 h. B: MTT assay of A549 and Beas-2B cells treated with 20 and 40 μmol/L luteolin for 48 h. C, D: EdU assay of A549 cells treated with 20 and 40 μmol/L luteolin for 48 h (Original magnification: ×100). E, F: Clone formation assay of A549 cells treated with 20 and 40 μmol/L luteolin for 48 h. *P<0.05, **P<0.01, ***P<0.001 vs control.
图2 Lut诱导A549细胞氧化应激
Fig.2 Luteolin induces oxidative stress in A549 cells. A, B: Detection of intracellular ROS levels in luteolin-treated A549 cells by flow cytometry. C: MTT assay of A549 cells treated with luteolin in the presence or absence of NAC for 48 h. *P<0.05, ***P<0.001vs control; ##P<0.01,###P<0.001 vs NAC- group.
图3 Lut诱导A549细胞凋亡
Fig.3 Luteolin induces apoptosis of A549 cells. A: Hoechst 33258 staining of luteolin-treated A549 cells (×100). B-D: Western blotting for detecting expression levels of Bax, Bcl-2, cleaved-caspase-9 in luteolin-treated A549 cells. ***P<0.001 vs control.
图4 Lut诱导A549细胞自噬
Fig.4 Luteolin induces autophagy in A549 cells. A, B: MDC staining for detecting autophagy in luteolin-treated A549 cells (×100). C-F: Western blotting for detecting expression levels of autophagy-related proteins Beclin 1, P62, and LC3B in luteolin-treated A549 cells. *P<0.05, ***P<0.001 vs control.
图5 Lut对A549细胞AKT/mTOR通路、HO-1蛋白水平的改变
Fig.5 Luteolin-induced changes in AKT/mTOR signaling and HO-1 protein levels in A549 cells. A-D: Western blotting for detecting expression levels of AKT, P-AKT, mTOR, P-mTOR, and HO-1 proteins in luteolin-treated A549 cells. E, F: Western blotting for detecting HO-1 protein expression levels in A549 cells treated with luteolin in the presence or absence of LY294002 for 48 h. G-I: Western blotting of P-AKT and P-mTOR protein expression levels in A549 cells treated with luteolin in the presence or absence of NAC for 48 h. ***P<0.001 vs control; #P<0.05, ###P<0.001 vs Lut group.
1 | He SY, Xia CF, Li H, et al. Cancer profiles in China and comparisons with the USA: a comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors[J]. Sci China Life Sci, 2024, 67(1): 122-31. |
2 | Varghese R, Efferth T, Ramamoorthy S. Carotenoids for lung cancer chemoprevention and chemotherapy: promises and controversies[J]. Phytomedicine, 2023, 116: 154850. |
3 | Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis[J]. Toxicol Pathol, 2010, 38(1): 96-109. |
4 | Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells[J]. Cell Death Dis, 2016, 7(6): e2253. |
5 | Huang R, Chen H, Liang JY, et al. Dual role of reactive oxygen species and their application in cancer therapy[J]. J Cancer, 2021, 12(18): 5543-61. |
6 | Zhang HB, Ma L, Kim E, et al. Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo [J]. Int J Mol Sci, 2023, 24(10): 8507. |
7 | Liou YF, Chen PN, Chu SC, et al. Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness[J]. Environ Toxicol, 2019, 34(11): 1208-20. |
8 | Gong XM, Smith JR, Swanson HM, et al. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms[J]. Molecules, 2018, 23(4): 905. |
9 | Fan JJ, Ren DM, Wang JX, et al. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo [J]. Cell Death Dis, 2020, 11(2): 126. |
10 | NavaneethaKrishnan S, Rosales JL, Lee KY. ROS-mediated cancer cell killing through dietary phytochemicals[J]. Oxid Med Cell Longev, 2019, 2019: 9051542. |
11 | Yao WS, Lin Z, Shi PY, et al. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells[J]. Biochem Pharmacol, 2020, 171: 113680. |
12 | Liu YH, Shi CJ, He Z, et al. Inhibition of PI3K/AKT signaling via ROS regulation is involved in Rhein-induced apoptosis and enhancement of oxaliplatin sensitivity in pancreatic cancer cells[J]. Int J Biol Sci, 2021, 17(2): 589-602. |
13 | Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a flavonoid, as an anticancer agent: a review[J]. Biomed Pharmacother, 2019, 112: 108612. |
14 | You YJ, Wang R, Shao NY, et al. Luteolin suppresses tumor proliferation through inducing apoptosis and autophagy via MAPK activation in glioma[J]. Onco Targets Ther, 2019, 12: 2383-96. |
15 | Wu L, Lin YD, Gao SY, et al. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling[J]. Front Pharmacol, 2023, 14: 1200843. |
16 | Yang HB, Zhao YY, Song W, et al. The inhibition of β‑catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma[J]. Int J Biol Macromol, 2024, 254(Pt 1): 127627. |
17 | Geng AZ, Luo L, Ren FY, et al. MiR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1[J]. BMC Cancer, 2021, 21(1): 843. |
18 | Zhou XJ, Chen Y, Wang FF, et al. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells[J]. Chem Biol Interact, 2020, 331: 109273. |
19 | Liu SJ, Bu QQ, Tong JS, et al. MiR-486 responds to apoptosis and autophagy by repressing SRSF3 expression in ovarian granulosa cells of dairy goats[J]. Int J Mol Sci, 2023, 24(10): 8751. |
20 | Zhao YJ, Guo WY, Gu XL, et al. Repression of deoxynivalenol-triggered cytotoxicity and apoptosis by mannan/β‑glucans from yeast cell wall: involvement of autophagy and PI3K-AKT-mTOR signaling pathway[J]. Int J Biol Macromol, 2020, 164: 1413-21. |
21 | Chu N, Zhang X, Chen S, et al. Luteolin has a significant protective effect against cadmium-induced injury in lung epithelial Beas-2B cells[J]. J South Med Univ, 2021, 41(5): 729-35. |
22 | Hseu YC, Lee MS, Wu CR, et al. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway[J]. J Agric Food Chem, 2012, 60(9): 2385-97. |
23 | Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what's limiting[J]? Chin J Cancer, 2017, 36(1): 50. |
24 | Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling[J]. Nat Rev Mol Cell Biol, 2014, 15(6): 411-21. |
25 | Li XM, Hou YN, Zhao JT, et al. Combination of chemotherapy and oxidative stress to enhance cancer cell apoptosis[J]. Chem Sci, 2020, 11(12): 3215-22. |
26 | Ullah A, Razzaq A, Alfaifi MY, et al. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis[J]. Curr Mol Pharmacol, 2024, 17: e18761429269383. |
27 | Wang T, Wu X, Al Rudaisat M, et al. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells[J]. J Cancer, 2020, 11(22): 6704-15. |
28 | Wang Q, Wang HD, Jia Y, et al. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma[J]. Cancer Chemother Pharmacol, 2017, 79(5): 1031-41. |
29 | Zhou CC, Qian WK, Li J, et al. High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 302. |
30 | Zhang N, Xue ML, Wang Q, et al. Inhibition of fucoidan on breast cancer cells and potential enhancement of their sensitivity to chemotherapy by regulating autophagy[J]. Phytother Res, 2021, 35(12): 6904-17. |
31 | Sun Y, Qiao YN, Liu Y, et al. Ent-Kaurane diterpenoids induce apoptosis and ferroptosis through targeting redox resetting to overcome cisplatin resistance[J]. Redox Biol, 2021, 43: 101977. |
32 | Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging, 2016, 8(4): 603-19. |
33 | Sahoo G, Samal D, Khandayataray P, et al. A review on caspases: key regulators of biological activities and apoptosis[J]. Mol Neurobiol, 2023, 60(10): 5805-37. |
34 | Bortnik S, Gorski SM. Clinical applications of autophagy proteins in cancer: from potential targets to biomarkers[J]. Int J Mol Sci, 2017, 18(7): 1496. |
35 | Jovanović L, Nikolić A, Dragičević S, et al. Prognostic relevance of autophagy-related markers p62, LC3, and Beclin1 in ovarian cancer[J]. Croat Med J, 2022, 63(5): 453-60. |
36 | Li W, Cai ZN, Mehmood S, et al. Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway[J]. Int J Biol Macromol, 2018, 120(Pt A): 865-75. |
37 | Li H, Song F, Duan LR, et al. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: roles of Nrf2/HO-1 and PI3K/Akt pathway[J]. Sci Rep, 2016, 6: 23693. |
38 | Hu YW, Liu Y, Guo EY, et al. Naphtho-γ-pyrone dimers from an endozoic Aspergillus niger and the effects of coisolated monomers in combination with cisplatin on a cisplatin-resistant A549 cell line[J]. J Nat Prod, 2021, 84(7): 1889-97. |
39 | Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125(1): 25-32. |
40 | Yang JL, Pi CC, Wang GH. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells[J]. Biomed Pharmacother, 2018, 103: 699-707. |
[1] | 耿志军, 杨晶晶, 牛民主, 刘馨悦, 施金冉, 刘亦珂, 姚新宇, 张雨路, 张小凤, 胡建国. 桑黄酮G通过调控PI3K/AKT/mTOR通路抑制胃癌细胞的生长、迁移和侵袭[J]. 南方医科大学学报, 2024, 44(8): 1476-1484. |
[2] | 刘硕, 李静, 吴兴旺. Swertiamarin通过抑制肠上皮细胞细胞凋亡改善TNBS诱导的实验性结肠炎[J]. 南方医科大学学报, 2024, 44(8): 1545-1552. |
[3] | 从小凡, 陈腾, 李硕, 王媛媛, 周龙云, 李小龙, 张配, 孙小锦, 赵素容. 双氢青蒿素通过促进活性氧的产生增强鼻咽癌细胞对顺铂诱导凋亡的敏感性[J]. 南方医科大学学报, 2024, 44(8): 1553-1560. |
[4] | 肖林雨, 段婷, 夏勇生, 陈悦, 孙洋, 许轶博, 徐磊, 闫兴洲, 胡建国. 蒙花苷通过抑制TLR4/NF-κB通路抑制小鼠脊髓损伤后小胶质细胞活化介导的神经炎症和神经元凋亡[J]. 南方医科大学学报, 2024, 44(8): 1589-1598. |
[5] | 程瑶, 王远迎, 姚飞扬, 胡盼, 陈铭勰, 吴宁. 黄芩苷通过调控PI3K/AKT信号通路抑制登革病毒感染诱导的人静脉内皮细胞的自噬[J]. 南方医科大学学报, 2024, 44(7): 1272-1283. |
[6] | 张叶明, 张袁祥, 沈学彬, 王国栋, 朱磊. 在抑郁症大鼠模型中MiRNA-103-3p调控Rab10促进神经细胞自噬[J]. 南方医科大学学报, 2024, 44(7): 1315-1326. |
[7] | 陈芊伊, 尚书涵, 鲁欢, 李思思, 孙志勉, 范喜瑞, 戚之琳. 金盏花苷E通过自噬途径下调GPX4和SLC7A11抑制肝癌细胞的增殖和迁移[J]. 南方医科大学学报, 2024, 44(7): 1327-1335. |
[8] | 陶怀祥, 骆金光, 闻志远, 虞亘明, 苏萧, 王鑫玮, 关翰, 陈志军. STING高表达通过调控TLR4/NF-κB/NLRP3通路和影响炎症与凋亡水平促进小鼠肾脏缺血再灌注损伤[J]. 南方医科大学学报, 2024, 44(7): 1345-1354. |
[9] | 郑孟冬, 刘妍, 刘娇娇, 康巧珍, 王婷. 蛋白4.1R对肝细胞HL-7702增殖、凋亡以及糖酵解的影响[J]. 南方医科大学学报, 2024, 44(7): 1355-1360. |
[10] | 王元国, 张鹏. 铁死亡抑制基因在食管癌中的高表达分析[J]. 南方医科大学学报, 2024, 44(7): 1389-1396. |
[11] | 任志军, 刁建新, 王奕婷. 芎归汤通过抑制氧化应激诱导的心肌凋亡减轻小鼠心梗后心衰引起的心肌损伤[J]. 南方医科大学学报, 2024, 44(7): 1416-1424. |
[12] | 陈桂玲, 廖晓凤, 孙鹏涛, 岑欢, 舒盛春, 李碧晶, 黎金华. 澳洲茄碱通过调控Bcl-2/Bax/caspase-3信号通路促进非小细胞肺癌发生凋亡[J]. 南方医科大学学报, 2024, 44(6): 1109-1116. |
[13] | 鲁玲君, 杨小迪, 张华平, 梁媛, 石秀兰, 周鑫. 重组日本血吸虫半胱氨酸蛋白酶抑制剂对急性肝损伤小鼠的保护作用及机制[J]. 南方医科大学学报, 2024, 44(6): 1126-1134. |
[14] | 张方圆, 刘刚. 右美托咪定通过激活Nrf2/HO-1/GPX4通路抑制肾小管上皮细胞的铁死亡[J]. 南方医科大学学报, 2024, 44(6): 1135-1140. |
[15] | 杨泽, 张秀森, 张旭东, 柳颖, 张嘉诚, 原翔. 基于YTHDF2介导凋亡相关因子降解途径研究牙龈卟啉单胞菌协助食管癌免疫逃逸[J]. 南方医科大学学报, 2024, 44(6): 1159-1165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||